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Introduction 

Circles, rectangles, triangles and spirals are found in prehistoric art and in 
the art and decorations of primitive man. Even before human beings 
entered the scene they were found in nature, as were innumerable crystals, 
so perfectly and mysteriously geometrical that it was believed until recently 
that they grew in the earth according to some vital principle. 

Egyptian architecture displays many geometrical forms and features, 
and an early style of Greek art is called geometric from the patterns 
displayed. As soon as the Greeks started to look at geometrical figures for 
their own sake, a new wealth of properties was revealed. The Pythagorean 
triangle, on the other hand, is far older than Pythagoras. It may be as old 
as the stone age. 

When Menrechmus sliced a cone, figures were revealed that two 
thousand years later proved to be one key to the motion of the planets. 
When Archimedes found volumes by summing many parallel slices, he was 
anticipating the integral calculus. 

Many of the most important advances in the history of mathematics 
have been achieved by leaps of geometrical insight not excluding the 
ordinary and familiar. Ironically, topologists were the first to look with 
mathematical eyes on the humble knot, which is as old as history itself. 

Most recently, the study of fractals and chaos has revealed images of 
unexpected beauty, depth and mystery, as well as exhibiting the continuing 
power of geometrical styles of thinking in the physical sciences. 

This is a companion to the Penguin Dictionary of Curious and Inter­
esting Numbers, with a difference, however. The variety of geometrical 
images is so great that no one book could contain more than a sampling. 
Entire books have been written about tessellations alone, or topological 
curiosities, or geometrical extremal properties, beside the wealth of classi­
cal geometry. This is my selection from that cornucopia. 

Many of the entries are identified by the name of the discoverer (or the 
name which popular history has attached to them - not always the same 
person!) All the names mentioned will be found in the index, with dates 
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and domiciles where appropriate. A small number of recent sources are 
credited in references to particular journals or books. 

Further information, and many of the entries that I would like to have 
included but could not, will be found in the books listed in the bibliog­
raphy. May I add, however, that I do hope that readers will be at least as 
keen to take up pen and paper and investigate ideas that intrigue them for 
themselves, as they will be to search further sources. Geometry, like 
number theory, like all of mathematics, should not be a spectator sport! 

I am very grateful to several copyright holders for permission to use 
diagrams from their books or journals. These are recorded below. 

I should like to thank David Singmaster once again for the use of his 
extensive library; Peter Mayer for his helpful suggestions; John O'Driscoll 
for the hand drawn figures; and Ravi Mirchandani of Penguin Books for 
his enthusiasm for and patient oversight of this dictionary. 

Finally, I would like to thank John Sharp for producing the illustrations 
by computer, in many cases improving on their traditional presentation 
and producing some which have never been seen before. 
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University Press, 1988, in the entry on Haiiy's construction of polyhedra; 
The Mathematical Association of America, Mathematics Magazine, vol 
52 (1), January 1979, p 13, for the Chinese illustration of Pythagoras' 
theorem. 



A Chronological List Of 
Mathematicians 

This list includes all the important mathematicians named in this diction­
ary, other than those still living, plus several scientists and others, such as 
Leonardo and Galileo. It is surprising how many well-known mathemati­
cians are known to non-mathematicians as physicists, engineers, and so 
on! 

Thales of Miletus c.625-c.547 Be Greek 

Pythagoras c.580-c.480 Be Greek 

Hippocrates of Chios fl. c.440 Be Greek 

Plato c.427-347 Be Greek 

Aristotle 384-322 Be Greek 

Euclid f1. c.295 Be Greek 

Philo fl. c.250 Be Greek 

Nicomedes fl. c.240 Be Greek 

Perseus fl. 3rd cent Be Greek 

Archimedes c.287 Be-212 Be Greek 

Diocles c.180 Be Greek 

Apollonius of Perga c.225 Be-c. 1 75 Be Greek 

Heron of Alexandria fl. c. 62 AD Greek 

Menelaus of Alexandria f1. c. 100 Greek 

Ptolemy c.85-c.165 Greek 

Pappus of Alexandria fl. 300-350 Greek 

Abu'l Wefa 940-998 Persian 

Regiomontanus, Johannes 1436-1476 German 

Pacioli, Luca c.1445-1517 Italian 
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Leonardo da Vinci 1452-1519 Italian 

Durer, Albrecht 1471-1528 German 

Galileo (Galileo Galilei) 1564-1642 Italian 

Kepler, Johann 1571-1630 German 

Mersenne, Marin 1588-1648 French 

Pascal, Etienne 1588-1651 French 

Desargues, Girard 1591-1661 French 

Descartes, Rene du Perron 1596-1650 French 

Fermat, Pierre de 1601-1665 French 

Roberval, Gilles Personne de 1602-1675 French 

Torricelli, Evangelista 1608-1647 Italian 

Schoo ten, Frans van 1615-1660 Dutch 

Pascal, Blaise 1623-1662 French 

Cassini, Giovanni Domenico 1625-1712 Italian 

Huygens, Christiaan 1629-1695 Dutch 

Wren, Christopher 1632-1723 English 

Mohr, Georg 1640-1697 Danish 

Newton, Isaac 1642-1727 English 

Leibniz, Gottfried Wilhelm 1646-1716 German 

Ceva, Giovanni 1647/8-1734 Italian 

Tschirnha usen, 
Ehrenfried Walther von 1651-1708 German 

Bernoulli, Jakob 1654-1705 Swiss 

Simson, Robert 1687-1768 Scottish 

Bernoulli, Daniel 1700-1782 Swiss 

Euler, Leonhard 1707-1783 Swiss 

Malfatti, Gian Francesco 1731-1807 Italian 

Lagrange, Joseph Louis 1736-1813 Italian 

Watt,James 1736-1819 Scottish 

Hauy, Rene-Just 1743-1822 French 

Monge, Gaspard 1746-1818 French 

Mascheroni, Lorenzo 1750-1800 Italian 
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Carnot, 
Lazare Nicolas Marguerite 1753-1823 French 

Gergonne, Joseph Diez 1771-1859 French 

Bowditch, Nathaniel 1773-1838 American 

Gauss, Carl Friedrich 1777-1855 German 

Poinsot, Louis 1777-1859 French 

Crelle, August Leopold 1780-1855 German 

Brianchon, Charles Julien 1783-1864 French 

Poncelet, Jean Victor 1788-1867 French 

Cauchy, Augustin Louis 1789-1857 French 

Mobius, August Ferdinand 1790-1868 German 

Lobachevsky, Nikolai Ivanovich 1792-1856 Russian 

Dandelin, Germinal Pierre 1794-1847 Belgian 

Steiner, Jakob 1796-1863 Swiss 

Feuerbach, Karl Wilhelm 1800-1834 German 

Plucker, Julius 1801-1868 German 

Plateau, 
Joseph Antoine Ferdinand 1801-1883 Belgian 

Bolyai, Janos 1802-1860 Hungarian 

Verhulst, Pierre-Fran~ois 1804-1849 Belgian 

Jacobi, Carl Gustav Jacob 1804-1851 German 

Kirkman, Thomas Penyngton 1806-1895 English 

Schlafli, Ludwig 1814-1895 Swiss 

Salmon, George 1819-1904 Irish 

Cayley, Arthur 1821-1895 English 

Lissajous, Jules Antoine 1822-1880 French 

Cremona, Antonio 
Luigi Gaudenzio Giuseppe 1830-1903 Italian 

Beltrami, Eugenio 1835-1899 Italian 

Reye, Theodor 1838-1919 German 

Lemoine, 
Emile Michel Hyacinthe 1840-1912 French 

Neuberg, Joseph 1840-1926 Belgian 
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Schwarz, Hermann Amandus 1843-1921 German 

Clifford, William Kingdom 1845-1879 English 

Brocard, Pierre Rene 
Jean-Baptiste Henri 1845-1922 French 

Dudeney, Henry Ernest 1847-1930 English 

Klein, Christian Felix 1849-1925 German 

Poincare, Jules Henri 1854-1912 French 

Fappl, August 1854-1924 German 

Morley, Frank 1860-1937 American 

Hilbert, David 1862-1943 German 

Kiirschak, J6zsef 1864-1933 Hungarian 

Koch, Helge von 1870-1924 Swedish 

Fano, Gino 1871-1952 Italian 

Lebesgue, Henri Leon 1875-1941 French 

Soddy, Frederick 1877-1956 English 

Fatou, Pierre Joseph Louis 1878-1929 French 

Sommerville, Duncan 
Mclaren Young 1879-1934 Scottish 

Sierpinski, Waclaw 1882-1969 Polish 

Thebault, Victor 1882-1960 French 

Blashke, Wilhelm Johann Eugen 1885-1962 Austrian 

Julia, Gaston 1893-1978 French 
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A 
acute-angled triangle dissections What is the smallest number of 
acute-angled triangles into which an obtuse-angled triangle can be dis­
sected? Mark the incentre of the triangle, D, draw a circle centred on D 
through the vertex a. Complete the triangles as in the figure, and the 
dissection is complete in seven pieces. 

B 

A'-------~------~----------~ C 
This process works only if B > 90°, and B-A < 90° and B-C < 90°. If these 
conditions are not satisfied, then a line can be drawn from B to A C which 
cuts off one acute-angled triangle and leaves an obtuse-angled triangle 
which does satisfy the condition, making a total of eight pieces. 

A square can be dissected into nine acute-angled triangles, as the figure 
above shows, in which several of the angles are close to 90°. 



2 • ANGLE IN THE SAME SEGMENT 

REFERENCES: V. E. HOGGATT, 'Acute isosceles dissection of an obtuse 
triangle', American Mathematical Monthly, November 1961; MARTIN 

GARDNER, 'Mathematical Games', Scientific American, June 1981. 

angle in the same segment Mark two fixed points, A and B, on a circle. 
T is a variable point. The angle A TB is independent of the position of T 
along the major arc AB. If the variable point is placed at a point on the 
minor arc AB, call it S, then the angle ASB will be 1800 - A TB. 

B 

If AB is a diameter, then both angles will be right angles: 'The angle in a 
semicircle is a right angle', as Thales discovered in about 600 BC and the 
Babylonians had recognized as early as 2000 BC. 

If two circles intersect at A and B, and T moves as before, then the length 
of the chord P Q is constant. 
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Regiomontanus. posed the question: From what position will a statue such 
as this appear of maximum size? If the spectator is too close, it will appear 
heavily foreshortened, but if the spectator is too far away, it will simply 
be small. The statue subtends the maximum angle at the spectator's eye, 
and so appears to be of maximum size, when the circle also passes 
horizontally through the spectator's eye. 

This problem has been rediscovered several times since, most recently 
in this form: From where should a rugby player take a conversion, which, 
according to the rules, must be taken from a point in line with the point 
of touchdown, along a line perpendicular to the goal-line if the try has not 
been scored between the posts? 

Apollonian gasket or packing When three circles touch each other, 
they form a curvilinear triangle. Within this triangle another circle touch­
ing all three sides can be drawn, forming in turn three curvilinear triangles. 
This can be repeated over and over again. The figure shows the first few 
stages of the formation of the Apollonian gasket within this triangle. 
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The points that are never inside any of the circles form a set of zero 
area which is, as it were, more than a line, but less than a surface. Its fractal 
dimension therefore lies between 1 and 2, though its exact value is not 
known. It is approximately 1·3. 

Apollonius' problem The problem of constructing a circle which will 
touch each of three given circles was first proposed and solved by Apollo­
nius of Perga. In the most general case, there are 8 solutions: one circle 
which touches all three without surrounding any of them, one circle which 
touches and surrounds all three, three circles which surround one of the 
circles and three which surround two of them. (The analogous three­
dimensional problem of finding a sphere to touch each of four given 
spheres has, in the most general case, 2 x 2 x 2 x 2 = 16 solutions.) 

In this figure the inner and outer circles each touch the other three circles, 
and when the points of contact are joined the three lines are concurrent at 
X. It follows that any circle which touches the inner and outer circles in 
the same manner will also have points of contact in line with X. 

For every set of four touching circles, there is another set which touch 
at exactly the same set of six points. 

Given the sizes of three circles, each touching both the other two, what 
is the formula connecting the sizes of the various circles which touch each 
of them? 

The simplest formula uses not the radius of each circle, but its 'bend', 
which is the reciprocal of the radius. 
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The French mathematician and philosopher Descartes gave a formula, 
equivalent to the following, for the bends of four circles touching each 
other: 2(a2 + b2 + c2 + d2 ) = (a + b + c + d)2 

There is only one formula for eight possible circles, because the bend 
of a circle can be counted as negative if another circle touches it internally. 

This formula was rediscovered in 1842 and again in 1936 by Sir 
Frederick Soddy, the discoverer of Soddy's hexlet. This so pleased him that 
he celebrated by writing a poem to the journal Nature. The middle verse 
runs: 

Four circles to the kissing come, 
The smaller are the benter. 
The bend is just the inverse of 
The distance from the centre. 
Though their intrigue left Euclid dumb 
There's now no need for rule of thumb. 
Since zero bend's a dead straight line, 
And concave bends have minus sign, 
The sum of the squares of all four bends 
Is half the square of their sum. 

arbelos This figure, bounded by three semicircles on the same line, was 
called an arbelos (the Greek word for a shoemaker's knife) by Archimedes, 
who found the radius of a single circle touching all three semicircles. 

Five hundred years later, Pappus described as an ancient result the fact 
that if succession of tangent circles are drawn within the arbelos, then the 
height of the centre of the nth circle above the base-line is n times its 
diameter. 

The centres of the circles lie on an ellipse whose major axis is the 
base-line, and their mutual points of contact lie on a circle. 
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Archimedes proved that the area of the arbelos is equal to the area of 
the circle on the line A C as diameter; adding the other tangent to the two 
smaller semicircles, BD, gives a rectangle, ABCD. 

Archimedes also proved that if two circles are inscribed on either side 
of AC, touching it, they are equal. 

A 
In the figure on the right one semicircle is omitted. Now the distance of 
the centre of the nth circle from the base is 2n - 1 times the corresponding 
radius. Most arbelos figures are special cases of Steiner chains of circles. 

Archimedean polyhedra Archimedes, according to Pappus, investi­
gated the 13 semi-regular polyhedra. Their faces are all regular polygons, 
but of two or more kinds, and their vertices are identical. 

truncated 
tetrahedron 

truncated 
cube 

cub octahedron 

truncated 
octahedron 



small 
rhombicuboctahedron 

snub 
cube 

truncated 
dodecahedron 

small 
rhombicosidodecahedron 

snub 
dodecahedron 

ARCHIMEDIAN POL YHEDRA • 7 

great 
rhombicuboctahedron 

icosidodecahedron 

truncated 
icosahedron 

great 
rhombicosidodecahedron 
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Eleven of these figures can be obtained by truncation. Nine of these 
come from truncating the vertices, or the vertices and the edges, of the 
regular polyhedra. For example, the cub octahedron is a truncated cube 
which has been truncated further, until the triangles at the vertices meet 
at the mid-points of the sides. The others come from truncating two of the 
first nine. 

The snub cube and snub dodecahedron can be constructed by moving 
the faces of a cube or dodecahedron outwards, giving each face a twist, 
and filling the resulting space with ribbons of equilateral triangles. Because 
the twist can be to the left for every face, or to the right, they each exist 
in two forms which are mirror images of each other. 

Archimedean spiral This curve, which was studied by Archimedes in 
his book On Spirals, is the locus of a point which moves away from a fixed 
point with constant speed along a line which rotates with constant velocity. 

Its polar equation if the fixed point is at the origin is, therefore, r = aB. If 
a > 0, then as the point moves away from the origin it rotates about the 
origin anticlockwise. If a < 0, the rotation is clockwise. 

The Archimedean spiral can be used to trisect any angle, or indeed to 
divide an arbitrary angle into any given number of equal parts. The angle 
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XOA is to be trisected. XEFA is a portion of an Archimedean spiral. 
Draw OE equal to OA, and trisect EX at C and D. Draw arcs from C and 
D, centre 0, to cut the spiral atE and F. Then 0 E and 0 F trisect the angle 
XOA. 

o 

art gallery theorem In August 1973, at a mathematical conference, 
Vasek Chvatal asked Victor Klee for an interesting geometrical problem. 
Klee's response was to ask the novel question: how many guards are 
necessary to keep all the walls of an art gallery in continuous view? 

If the art gallery is in the shape of a polygon, with N reflex vertices, 
then N guards are always sufficient, and sometimes necessary, as the figure 
shows. A guard is necessary for each of the arms of the gallery. Anyone 
(or more) of these guards can also overlook the central area. 
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astroid or hypocycloid of four cusps The astroid is the locus of a point 
on a circle rolling inside another circle four times its diameter, and also 
(as Daniel Bernoulli realized) the locus of a point on a circle, also rolling 
inside, which has three-quarters the diameter of the fixed circle. 

Curiously, in addition to the four visible cusps, it has two imaginary cusps. 
If a circle rolls inside another circle of twice its diameter, then the 

envelope of a diameter of the rolling circle is the astroid. The ends of a 
diameter of the rolling circle always lie on a pair of perpendicular 
diameters of the fixed circle, so the astroid is also the envelope of a line of 
fixed length which slides between two such perpendicular lines. 

If the radius of the fixed circle is a, then the equation is 

X2/3 + y2/3 = a2/3 

which appears in Leibniz's correspondence in 1715. 
The area of the astroid is three-eighths that of its circumscribed circle, 

or one-and-a-half times that of its inscribed circle. 
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As the figure below shows, the astroid is the envelope of a family of 
ellipses whose axes lie on the same pair of perpendicular lines, and for 
which the sum of the major and minor axes is constant. 

Aubel's theorem Draw any quadrilateral. It need not be convex, and 
it doesn't even matter if one of the sides is of zero length. Construct squares 
on all the sides, facing outwards. The line segments joining the centres of 
opposite squares are equal in length, and perpendicular. 

If the squares are constructed in the opposite direction, inwards, then the 
centres of opposite squares can still be joined by two perpendicular 
segments of equal length. Moreover, these two shorter segments plus the 
two in the figure have only two mid-points between them, and the 
mid-point of the line joining these mid-points is the centroid of the four 
vertices of the original quadrilateral. 
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average of two polygons Draw two similar triangles, in any position 
but the same orientation. (One of them must not be turned over.) 

Then the average triangle, formed by joining corresponding vertices and 
taking the mid-points, is similar to the two original triangles. The same is 
true of polygons in general. It is also true if, instead of taking the 
mid-points of the lines, they are just divided in the same ratio. 

It is also a special case of this theorem illustrated in this figure: 

Take two similar triangles in the same orientation. Construct three other 
triangles, also similar to each other, on the lines joining corresponding 
vertices. Then the free vertices of these new triangles form a triangle similar 
to the original pair. The generalized Napoleon figure is also a special case 
of this theorem. 

Another special case, which has been discovered many times, is that if 
two squares ABCD and XYZD have a common vertex D, then the two 
mid-points of the lines joining AX and CZ, and the centres of the squares, 
form another square. 



B 
Bang's theorem The faces of a tetrahedron all have the same perimeter 
only if they are congruent triangles. It is also true that if they all have the 
same area, then they are congruent triangles. 

billiard ball path in a cube and in a regular tetrahedron Can a 
billiard ball bounce continuously around the inside of a cube always 
returning after one circuit to its starting point? 
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It can. This path was discovered by Hugo Steinhaus. Each bouncing point 
is the corner of a three-by-three grid on that side, and all the segments of 
the path are of equal length. The path is known to chemists as a 'chair­
shaped hexagon'. Its projection perpendicular to any face of the cube is a 
rectangle; the projection along one of the diagonals of the cube is a regular 
hexagon. 

John Conway discovered a similar path inside a regular tetrahedron. The 
sides of the small triangles marked out on the faces of the tetrahedron are 
one-tenth the side of the original figure. There are three such paths, one 
for each corner of a small triangle. 
REFERENCE: MARTIN GARDNER, Sixth Book of Mathematical Games 
from Scientific American, W. H. Freeman, San Francisco, 1971. 

billiard ball paths in polygons Can a billiard ball bouncing around 
inside an acute-angled triangle move in a continuous path? The only closed 
path of one circuit is the pedal triangle, which joins the feet of the altitudes 
and which is the shortest circuit of any kind which joins the three sides 
continuously. 
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If the ball is allowed to make more than one circuit before returning to its 
original point and repeating, then an infinite number of circuits are 
possible, but their segments are all parallel to the sides of the pedal triangle: 

A continuous path is possible inside a quadrilateral if it is cyclic, and if the 
centre of the circle lies inside the quadrilateral. 

Blanche's dissection It is a well known and rather. difficult problem to 
dissect a rectangle into squares of different sizes. Turning the problem 
round, it is easy to dissect a square into rectangles of different sizes, but 
can the rectangles be of the same area but different shapes? 



16 • BLANCMANGE CURVE 

This is the simplest solution, requiring seven pieces, showing one possible 
set of dimensions. 

159 51 

39·6 

123·6 

170·4 

50 

36-4 

37 173 

REFERENCE: BLANCHE DESCARTES, 'Division of a square into rect­
angles', Eureka, No.34, 1971. 

blancmange curve Take a series of zigzag curves, each half the height 
of the previous one and with twice as many zigzags. Continue the series 
to infinity and then add them all up. The result is the blancmange curve, 
which is continuous but does not have a tangent anywhere. The first four 
stages in its construction are shown below. In each figure but the first, the 
bold line is the sum of the previous stage and the new zigzag. 
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The fifth step shows the blancmange shape more prominently; by the 
eighteenth step it is difficult to distinguish the curve from its appearance 
after an infinite number of steps: 

The figure below shows another property of the blancmange curve. 
Construct one 45° zigzag over two blancmanges, and add them together: 
the result is a single, larger blancmange. 

Blashke's theorem The width of a closed convex curve in a given 
direction is the distance between the two closest parallel lines, perpendi­
cular to that direction, which enclose the curve. The figure shows the 
widths of three closed convex curves in the given directions. 
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Blashke proved that any closed convex curve whose minimum width 
is 1 unit or more can contain a circle of diameter 2/3 unit. An equilateral 
triangle of height 1 unit contains just such a circle, so the limit of 2/3 is 
the best possible. 

Borromean rings The arms of the Italian Borromean family were three 
rings, joined together so that all three cannot be separated, although no 
single pair of rings is linked. The same pattern has been used by the 
Ballantine Beer Company in the United States and by Krupp, the German 
armaments manufacturer. 

There are no distinct right-handed arid left-handed forms - either can be 
manipulated into the other. This has suggested the following three­
dimensional version, which has three planes of symmetry. 
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It is simple to link any number of rings in the same manner. 

braced square Given a square made of four equal rods, hinged at the 
corners, how many more rods, of the same length and also hinged at their 
ends, must be added in the same plane to make the original square rigid 
in that plane? 

This is the minimum solution, found by readers of Martin Gardner's 
column in Scientific American. The points A, Band C are collinear. 
REFERENCE: MARTIN GARDNER, Sixth Book of Mathematical Games 
from Scientific American, W. H. Freeman, San Francisco, 1971. 
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braids The best-known braid is the repeating braid used to plait long 
hair. It comes in two forms, right-handed and left-handed. 

If it is stopped at some point and the corresponding ends joined, the result 
is either three linked rings or a single knot. 

Brianchon's theorem If a hexagon is circumscribed about a conic, that 
is, if each of its sides touches the conic, then the major diagonals of the 
hexagon are concurrent. 

, · , · , · , · , · , · , · , · , · , i---------­----------"/t , . , . , . , . 
• • • • • • 

As Brianchon also showed, the sides of the circumscribing hexagon can be 
taken in any order. 
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The major diagonals of the hexagon formed by the points of contact meet 
in pairs on the diagonals of the hexagon. 

Brianchon published his theorem in 1810. It is the dual of the much earlier 
Pascal's theorem and can therefore be obtained from Pascal's theorem by 
switching lines and points, thus: 

BRIANCHON'S THEOREM: 
If a hexagon is circumscribed about 
a conic - that is, if each of its 
sides touches the conic, 
then the lines joining 
pairs of opposite vertices 
pass through one point. 

PASCAL'S THEOREM: 
If a hexagon is inscribed in 
a conic - that is, if each of its 
vertices lies on the conic, 
then the points in which 
pairs of opposite sides meet 
lie on one line. 

Brocard points of a triangle Named after Henri Brocard, a French 
army officer, who described them in 1875. However, they had been 
studied earlier by Jacobi, and also by Crelle, in 1816, who was led to 
exclaim, 'It is indeed wonderful that so simple a figure as the triangle is so 
inexhaustible in properties. How many as yet unknown properties of other 
figures may there not be?' How prophetic! Entire books have been written 
on this figure. 
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For any triangle there is a unique angle OJ, the Brocard angle, such that 
the lines in the figure concur, at the Brocard points nand n'. 

A A 

B -~---~ C B &.----=-~ C 

The Brocard angle is given by this formula whose simplicity suggests that 
it must be significant: 

cot OJ = cot A + cot B + cot C 

The Brocard points can be constructed geometrically by drawing the 
circles that pass through two vertices, touching one side, as in this next 
figure. The circles touching AB at A, and so on, define one Brocard point, 
and the circles touching AB at B, and so on, would define the other. 

Here are two more 'wonderful' properties: If cn' and Bn meet at X and 
X', and so on, then n, n', X, Y, and Z all lie on a circle. If three dogs start 
at the vertices of a triangle and chase each other's tails, each moving at 
the same speed, then the final dogfight will take place at one or other of 
the Brocard points, according to the direction of the chase. Compare the 
fate of four dogs chasing each other, under pursuit curves. 



c 
Cairo tessellation So called because it often appears in the streets of 
Cairo, and in Islamic decoration. 

It can be seen in many ways, for example as cross-pieces rotated about the 
vertices of a square grid, their free ends joined by short segments, or as 
two identical tessellations of elongated hexagons, overlapping at right 
angles. The latter suggests that the Cairo tile has many different forms, 
depending on the shape of the overlapping hexagons. 

Its dual tessellation, formed by joining the centre of each tile to the centre 
of every adjacent tile, is a semiregular tessellation of squares and equilat­
eral triangles. 
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cardioid or epicycloid of one cusp The cardioid (meaning 'heart­
shaped'), together with related curves such as the astroid, was first studied 
in 1674 by the astronomer Ole Remer, who was seeking the best shape 
for gear teeth. Earlier, the Greeks had considered describing the motion 
of the planets as 'circles-moving-upon-circles'. 

When a circle rolls round another circle of the same size, any point on the 
first circle traces out a cardioid. Alternatively, it is the path of a point on 
a moving circle twice the diameter of the fixed circle, which rolls round 
while enclosing the fixed circle. 

The polar equation is r = 2a(1 ± cos 0). The length of the cardioid is 
16a, and its area 6na2• 

The cardioid is also the envelope of all the circles with centres on a 
fixed circle, passing through one point on the fixed circle. 
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Draw any three parallel tangents, and join the points of contact to the 
cusp. These three radii are at angles of 120°, and the cusp is a Fermat point 
of the points of contact. The centroid of three points at which parallel 
tangents touch the cardioid is always the centre of the fixed circle. 

An arbitrary line will cut the cardioid in four points, two of which may 
be imaginary. The sum of the distances from the cusp to these intersections 
is constant. In particular, since a line through the cusp cuts the curve in 
two points, the length of any chord through the cusp is constant, and equal 
to 4a. The midpoints of these chords lie on a circle. The tangents at the 
ends of a chord through the cusp are perpendicular. 

carpenter's-square trisection One of the three classical Greek prob­
lems, which cannot be solved by using ruler and compasses alone, is to 
trisect a general angle. It can be achieved with a carpenter's square. 

c--------------~~~~~=-~ 

LAB C is the angle to be trisected. First use the wide arm of the carpenter's 
square to draw DE parallel to BC. Then lay the square so that one edge 
goes through B and the outer corner lies on DE, and so that the length 
P Q is double the width of the wide arm. Mark the mid-point, R, of P Q. 
Then BP and BR are the trisectors of LABC. 
REFERENCE: H. T. SCUDDER, 'How to trisect an angle with a carpenter's 
square', American Mathematical Monthly, May 1928. 

Cassinian oval or ellipse If a point moves so that the product of its 
distances from two fixed points, F 1 and F2, is constant, its path is a 
Cassinian oval - named after Giovanni Domenico Cassini, who studied 
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them in 1680 in connection with the relative motions of the Earth and the 
Sun. 

Bernoulli's lemniscate is a special case in which the constant product is 
equal to the square of the distance between the fixed points. 

Cassini's ovals are the cross-sections of a circular torus cut by a plane 
parallel to its axis. The Greek mathematician Perseus first considered the 
sections of a torus, so they have been called the spiric sections of Perseus 
(the Greeks, curiously, having called the torus the spira). 

catenary A uniform hanging chain forms a catenary, so named by 
Huygens in 1691. Galileo thought that a rope might hang in the shape of 
a parabola, an understandable mistake since the parabola and catenary 
are very close to each other near the vertex. 

The equation of the catenary is y = a cosh(x/a). 
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The catenary is also the locus of the focus of a parabola which rolls on 
a straight line. 

The involute of the vertex of the catenary is the tractrix. The asymptote 
of this tractrix is called the directrix of the catenary. 

catenoid The surface formed by rotating a catenary about its directrix 
is a minimal surface. It is the form of a soap film between two empty 
circular rings on the same axis. It is the only minimal surface of revolution. 
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caustic of a circle Caustics were first studied as a branch of optics by 
Tschirnhausen in 1682. 

Given a fixed curve, and a fixed source of light, the light rays from the 
source which are reflected from (or are refracted by) the curve, envelope 
a new curve called a caustic. 

The caustic of a circle produced by reflection is seen, rather crudely, 
when a lamp shines against the inside of a teacup and the light rays are 
reflected onto the surface of the liquid. 

The caustic by reflection is generally a limac;on. There are three 
exceptional positions for the light source. At infinity, the caustic is a 
nephroid, if the light source is on the circle it is a cardioid, and the caustic 
of a light source at the centre of the circle is the centre of the circle itself. 

The figure above shows the caustic of a circle, by reflection, for a point 
source outside the circle. Caustics by reflection can also be thought of as 
evolutes. The curve in the figure is the evolute of a limac;on whose pole is 
the light source. 

Ceva's theorem Giovanni Ceva was a geometer and hydraulic engineer, 
and also the first mathematician to write on economics. In 1678 he 
published a book containing the theorem named after him, which he 
proved by considering centres of gravity. 

If 
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thenthelinesAA', BB' andCC' concur. The converse is also true. Looked 
at mechanically, as Ceva viewed it, A', B' and C' are the centres of gravity 
of suitable pairs of weights at the vertices, and the point of concurrence is 
the centre of gravity of all three weights together. 

A 

A' C 
The theorem can be extended to any simple polygon with an odd 

number of sides. In a pentagon, for example, if lines through the vertices 
A, B, C, D and E, meet the opposite sides in A', B', C', D' and E', then 

chords at 60° Given any closed convex curve, it is possible to find a 
point P, and three chords through it inclined at 60°, such that P is the 
mid-point of all three. 
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chords halving the perimeter Every diameter of a circle, or every 
straight line through the centre of a square (or more generally a parallelo­
gram) bisects the perimeter. However, a curve may possess a point with 
this property without being so symmetrical. 

, , , , , , , 

, , , 
, , 

" 0 , 

This is two equal half-circles on another half-circle. Every line through 0 
divides the perimeter into two equal parts. 

circle tessellations Tessellations are usually defined as filling the plane 
completely, but the concept is easily extended to tessellations with holes 
in them, or tessellations of circles, which necessarily leave gaps every­
where. 

All the semiregular tessellations can be transformed into a network of 
circles by drawing identical circles centred on every vertex. On the left is 
the transformed tessellation of squares and equilateral triangles, and on 
the right the result of transforming one of the two semiregular tessellations 
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of hexagons and equilateral triangles. (That tessellation comes in a right­
handed and a left-handed form.) 

circles on a sphere How large can N identical circles be, if they are to 
be placed on the surface of a sphere? For particular values of N, for 
example if N is the number of faces of one of the regular polyhedra, the 
solution is simple, and completely symmetrical. Thus eight identical circles 
can be drawn, one within each quadrant of the surface of a sphere, each 
touching three others, corresponding to the faces of an octahedron. 

For other values of N, the configuration is less symmetrical and the 
solution much harder to find. The figure shows a solution for 64 circles. 
The splwrical triangle shows the position of the pole (with four circles 
surrounding it) and the equator as the side opposite to the pole. 
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circumcircle of a triangle, The perpendicular bisectors of the sides of 
a triangle meet in the point which is the centre of the circle through the 
vertices. If H is the orthocentre of the triangle, then the sum of the vectors 
of OA, OB and OC is equal to the vector of OH. 

A 

B 

Clifford's theorems Clifford discovered a sequence of theorems, each 
building on the last in a natural progression. 

Clifford's first theorem: Let at> a2, a3 and a4 be four circles passing through 
a point Q. Let al and a2 meet also in P12' and so on. Let a123 be the circle 
through P12, P23 and P31, and so on. Then, the four circles a123, a124' a134 
and a234 all pass through one point, P 1234. 
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Clifford's second theorem follows on naturally: Let as be a fifth circle 
through Q. Then the five points P1234, P123S, P124S, P 134S and P2345 all lie 
on a circle a1234S' 

Clifford's third theorem is: The six circles a1234S, a123S6, ... , a23456 all 
pass through the point P1234S6' 

This sequence of theorems continues for ever. 

coaxial circles This figure shows two sets of coaxial circles. One set 
consists of all the circles through two fixed points. Each circle of the second 
set is orthogonal to every circle of the first set; that is, they cross at right 
angles. 

The circles in one set do not meet each other, and they include as limiting 
cases the two points inside the smallest circle and the vertical line of 
symmetry, which can be thought of as a circle of infinite diameter. 

Every circle in the other set of circles passes through the two limiting 
points of the first set, and includes the horizontal axis of symmetry as a 
special case. It has two imaginary limiting points. 

The figure was produced by inversion of a set of concentric circles (with 
radii increasing regularly) together with a set of lines (spaced at equal 
angles) through their centre. The inverting circle is centred on the left 
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limiting point and has a radius equal to the distance between the two 
centres. Each of the circles that do not meet is the inverse of one of the 
concentric circles. Those with centre falling outside the inverting circle give 
rise to the circles on the left, and so have a different spacing from those 
on the right. Each intersecting circle in the other set is the inverse of one 
of the lines. 

collapsoids Jean Pedersen, while typically experimenting with some­
thing else, discovered a class of non-convex collapsible polyhedra. 

Imagine that each edge of an icosahedron (or dodecahedron - the result is 
the same) is replaced by a baseless pyramid, the vanished edge being one 
of its diagonals. Each baseless pyramid has the net shown in the centre 
above and 30 of them are fitted together using the tabs as shown above 
right. This gives the following polar collapsoid. 

REFERENCE: JEAN PEDERSEN, 'Collapsoids', Mathematical Gazette, 
No. 408,1975. 
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common chords Given three intersecting circles, their common chords 
pass through a common point. 

If the circles do not intersect in real points, their common chords are not 
real, but they still meet in a common real point which is the meet of the 
three radical axes of the circles. This point is the centre of the unique circle 
which cuts all three circles orthogonally. 

complete quadrilateral Any four general lines meet in six points, 
forming a complete quadrilateral. A complete quadrilateral has three 
diagonals, in contrast to an 'ordinary' quadrilateral. The mid-points of 
these diagonals lie on a straight line. 
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Newton proved that if a conic is inscribed in a quadrilateral, then its 
centre lies on the line joining the mid-points of its diagonals. 

The four lines form four triangles, whose orthocentres lie on a line which 
is perpendicular to the line formed by the mid-points of the diagonals, and 
whose circumcircles have a common point. 

Plucker proved that the circles on the three diagonals as diameters have 
two common points. The common points lie on the straight line joining 
the orthocentres of the four triangles. 
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compound polyhedra Eight vertices of a regular dodecahedron can be 
chosen to be the vertices of a cube in five different ways. The figure shows 
two of these cubes placed at the vertices of the dodecahedron. Construct­
ing all these cubes at once produces the compound polyhedron of five 
cubes in a dodecahedron. 

Similarly, five regular tetrahedra can be found in the dodecahedron, to 
produce a symmetrical compound polyhedron, in two different ways: one 
left-handed and one right-handed. The twenty faces of the five tetrahedra 
form, invisibly inside the compound, the faces of an icosahedron whose 
vertices are the dimples where five edges of the tetrahedra meet. 

It is also possible for a pair of dual polyhedra to form a symmetrical 
compound, because they have the same numbers of edges and the same 
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symmetries. These are the compounds of cube and octahedron (left), and 
dodecahedron and icosahedron (right): 

The polyhedron common to the dodecahedron and icosahedron is the 
icosidodecahedron, obtained by removing the protruding pyramids. The 
polyhedron which contains them both is the rhombic triacontahedron. 

conchoid of Nicomedes Take any curve and a fixed point, A, not on 
the curve, and a constant distance k. Draw a straight line through A to 

meet the curve at Q. If P and P' are points on the straight line such that 
P/Q = QP = k, then P and P' trace out the conchoid of the curve with 
respect to A. 

A practical method is to attach two pens to opposite ends of a ruler, 
insert a pin at the fixed point, and allow the ruler to move against the pin 
so that the centre of the ruler moves along the fixed line. 

This is the conchoid of the straight line with respect to the point A. 
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The conchoid of a curve will vary according to the fixed point chosen. 
Special choices of the fixed point will produce especially simple results. 
For example, the conchoid of a circle, with respect to a fixed point on the 
circle, is a lima\on of Pascal. 

Nicomedes invented the conchoid ('mussel-sheil-shaped'), according 
to Pappus, in order to solve both the problem of duplicating the cube and 
the problem of trisecting the angle. This is how it performs the latter feat: 
in the figure, let AQ = tQP = t k, and let QR be perpendicular to the line. 
Then LRAB = :\LPAB. 

confocal conics Given any pair of points, there are an infinite number 
of ellipses and hyperbolas with these points as foci. 

No ellipse meets any other ellipse, nor does any hyperbola meet any other 
hyperbola, but every ellipse meets every hyperbola and cuts it at right 
angles. 
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Given only one point, and a line through it, there are two infinite 
families of parabolas with the point as focus and the line as axis. Each 
parabola of one set is orthogonal to every parabola of the other set. 

Cremona-Richmond configuration The simplest configurations of 
points and lines, such as the Fano plane, Desargues's configuration or the 
eleven-three (113) configurations, all contain at least one set of three points 
and three lines joining them to form a triangle. Indeed, it seems quite 
natural that any configuration should contain some triangles. 

The Cremona-Richmond is a 153 configuration, with 15 lines, 15 points, 
3 lines through every point, 3 points on every line, and not one triangle. 
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cross-ratio Pappus proved in the seventh book of his Mathematical 
Collection that, if four lines through a point are cut by two transversals, 
then the ratios, called the cross-ratios, of A, B, C and D and A', B', C' and 
D' respectively, are equal. The subject of cross-ratios then lay fallow until 
Desargues developed it in his Brouillon Project of 1639. 

The cross-ratio can be thought of as a ~atio of ratios: ABIBC divided by 
ADIDC. The cross-ratio of four concurrent lines is the cross-ratio created 
by any line crossing them. 

cube The cube is the best known of the Platonic or regular solids. It has 
6 faces, 8 vertices and 12 edges; and 13 axes of symmetry, 3 through the 
centres of opposite faces, 4 through opposite vertices and 6 through the 
mid-points of pairs of opposite edges. It is also a zonohedron. 

Identical cubes fill space most naturally when each cube meets each of 
its neighbours across a whole face. However, they can fill space in an 
infinite number of ways. Not only will layers of cubes slide against each 
other, but cubes can be arranged in each layer in an infinite number of 
ways. No other space-filling solid has this flexibility. 

Take a cube and delete the edges through a pair of opposite vertices. 
The mid-points of the remaining edges are the vertices of a plane regular 
hexagon. If some cubes are stacked to fill space in the natural way, the 
same plane cut which creates this regular hexagon in one cube will cut the 
stack in the semiregular tessellation of regular hexagons and equilateral 
triangles. 
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There are four ways of bisecting the cube by a cut forming a regular 
hexagon. The edges of all the hexagons are the twenty-four edges of a 
cub octahedron. 

The dual of the cube, formed by joining the centre of each face to the 
centres of the adjacent faces, is a regular octahedron. 

This is a compound of three cubes forming crosses on each other's 
faces. Each pair of cubes shares one axis of symmetry through a pair of 
opposite faces. 

cubic and triangle In the second half of the nineteenth century and the 
early part of the twentieth, there was an upsurge of interest on the part of 
a few mathematicians in what was called the 'Modern Geometry of the 
Triangle'. Many new features of the triangle were discovered and named, 
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often after the discoverers: the Brocard points, the Gergonne point, Nagel's 
point, Lemoine points, Tucker's circle, Neuberg's circle, Fuhrmann's 
circles, Kiepert's hyperbola, and so on. 

• 
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The figure shows one high point of their endeavours - a cubic curve, with 
one asymptote, which passes through no less than 37 significant points 
related to a general triangle; 21 are shown in the figure. Among the points 
lying on the cubic are: the vertices, the reflections of the vertices in the 
opposite sides, the six vertices of the equilateral triangles constructed 
outwards and inwards on the sides, the circumcentre and the orthocentre, 
and the centres of the inscribed and escribed circles. 

The tangents to the cubic at these last four points are all parallel to the 
asymptote. Among other properties, any line through one vertex cuts the 
cubic in two points which lie on a circle through the other two vertices. 

cydicquadrilateral A quadrilateral inscribed in a circle. If ABeD is a 
quadrilateral inscribed in a circle, then angles A + C = B + D = 180°. 

p 

s 
Q 
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Omit each of the vertices in turn, to obtain the four triangles BCD, 
ACD, ABD and ABC. The dots in the figure mark the incentres ofthese 
four triangles. They form a rectangle. 

IfP, Q, Rand S are the mid-points of the arcs AB, BC, CD and DA, 
then the sides of the rectangle are parallel to P Rand Q S, and P Rand Q S 
meet at the centre of the rectangle. 

If the excentres of the same four triangles are added, then together with 
the incentres, they form a rectangular 4 x 4 grid of 16 points. 

The centroids of the same four triangles form a quadrilateral similar 
to the original, as do their four nine-point centres. The four orthocentres 
form a quadrilateral congruent to the original. 

Take four points on a circle and draw all six lines joining them. The three 
diagonal points form the diagonal triangle (shown as thin lines in the 
figure). Each vertex is the pole of the opposite side with respect to the 
circle. If the tangents at all four original points are drawn, they meet in 
pairs on the sides of the diagonal triangle. 

cycloid Marin Mersenne considered problems about the cycloid, but, 
as was his custom, he passed the problems on to his fellow mathematicians 
and correspondents. The first treatise on the cycloid was written by 
Evangelista Torricelli, a student of Galileo, in 1644. Pascal also studied 
the curve, even using his study to relieve a bad toothache. 
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When a wheel rolls along a straight surface, a point on the wheel's rim 
traces a cycloid: 

Points within the wheel trace a curtate cycloid: 

When the wheel of a train rolls along a rail, a point on its circumference 
traces a prolate cycloid which contains loops: 

Imagine a circle, twice the diameter of the original circle, rolling with it. 
Then the diameter of the larger circle which was originally vertical touches 
the cycloid, which is its envelope. 
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Galileo supposed, correctly, that the cycloid is the strongest shape for 
the arch of a bridge. 

Galileo also attempted to find the area of the cycloid in 1599. Follow­
ing Archimedes' example, he cut out one complete cycloidal arch, weighed 
it, and compared the weight with the weight of the generating circle. He 
concluded that its area is roughly three times the area of the generating 
circle. Roberval proved in 1634 that it is indeed exactly three times the 
generating circle in area. 

The length of one complete arc equals the perimeter of a square 
circumscribed about the generating circle, as Sir Christopher Wren, an 
excellent geometer, proved in 1658. 

The evolute of a cycloid is an equal cycloid which is one half revolution 
out of phase with the original cycloid. 

The cycloid is also the solution to the brachistochrone problem: What 
is the shape of the brachistochrone, the curve down which a particle, 
falling under gravity, will travel from A to B in the shortest time? 

A 

An extraordinary feature of this solution is that if the destination point is 
only slightly below the height of the starting point, the quickest route takes 
the particle below the final point, and then up towards it! 

It is also true that a particle rolling down a cycloidal groove, provided 
the axis of the cycloid is vertical, will reach the bottom in the same time 
whatever point on the cycloid it may have started from. In other words, 
as well as being brachistochrone, the cycloid is a tautochrone. 
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Galileo discovered that the period of a pendulum depends only on its 
length, but this is true only for small oscillations. By making the pendulum 
wrap round a cycloid, it becomes true for oscillations of any amplitude. 

Huygens was the first to use this principle in an attempt to improve 
the pendulum clock, but the idea created more problems than it solved, 
and was soon abandoned. 
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Dandelin spheres An ellipse is a plane section of a cone. It is possible 
to fit one sphere into the cone to touch the plane, between the plane and 
the vertex, and another sphere to touch the plane and the cone on the other 
side. 

Dandelin, a professor of mechanics at Liege University, proved that the 
two spheres touch the ellipse at its foci, and that the directrices of the ellipse 
are the lines in which the cutting plane meets the planes of the circles in 
which the spheres touch the cone. 
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degenerate quartics Any two conics taken together can be treated as a 
quartic, a curve of degree four. So can a cubic and a straight line. 

The equation for the quartic is found by taking two ellipses, with equations 
E1 = 0 and E2 = 0, and forming the equation E1E2 = O. If the coefficients 
of the terms in the equation of the quartic are then varied slightly, the 
result will be a quartic which is very close to both ellipses. Depending on 
how the coefficients are varied, there are two possibilities, either four 
beans, or a curve in only two separate parts. 

Every quartic has 28 bitangents, but most of them are usually imagin­
ary. If the coefficients are suitably chosen, then each of the 4 individual 
beans has 1 bitangent and each of the 6 pairs of beans has 4 bitangents so 
that all 28 are real. 

Delian problem of duplicating the cube When the Athenians were 
suffering from a plague in 430 Be, they consulted the oracle of the god 
Apollo at Delos, and were instructed to double the size of their altar, which 
was a cube. They at once doubled every edge, and the ravages of the plague 
increased. 

The problem of constructing a length ~ times the length they required 
became known as the Delian problem, although equally ancient, similar 
problems on the size of altars had been studied in India. 

It was soon realized that the problem was equivalent to finding two 
mean proportionals between two lengths. In other words, given a and b, 
if two mean proportionals x and y can be found such that x/a = y/x = 
b/y, then (x/a)3 = b/a. 

Unfortunately, the Greeks were unable to construct solutions by using 
ruler and compasses only. Their many solutions were obtained by using 
either operations that can be performed only with an element of human 
judgement, or curves invented for the purpose (and these curves could not 
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themselves be constructed by ruler and compasses). One such curve is the 
conchoid of Nicomedes; another is the cissoid of Diocles. 

In general, a cissoid can be constructed for any two curves and a given 
fixed point. The cissoid of Diocles is the cissoid of a circle (centre 0) and 
a line touching it (at B) with respect to the point (A) opposite the point of 
tangency. Draw a straight line through A to meet the circle at Q and the 
line through B at R, and mark the point P on this new line such that AP 
= QR. The cissoid is then the path of P. If the radius of the circle is unity, 
then OU3 = OL. 

B R 

A 

A simple solution to the Delian problem, requiring only a ruler with two 
points marked on it 1 unit apart, is the following. The unit lengths are as 
marked. The ruler is adjusted by hand so that it passes through the upper 
vertex of the equilateral triangle, and the distance between the points 
where it intercepts the two lines on the right is 1 unit. The distance from 
the upper vertex to the nearest of the intercepts is then tr units. 

REFERENCES: E. H. LOCKWOOD, A Book of Curves, Cambridge Univer­
sity Press, Cambridge, 1961; H. DORRIE, One Hundred Great Problems 
of Elementary Mathematics, Dover, New York, 1963. 
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deltahedra Martyn Cundy gave the name 'deltahedron' to any polyhe­
dron whose faces are all equilateral triangles. Three of the Platonic solids 
are deltahedra: the tetrahedron, octahedron and icosahedron. There are 
just eight convex deltahedra, the Platonic solids just mentioned, and the 
five shown below, drawn to show how they can be assembled from smaller 
parts. 

If the solid need not be convex, there are endless possibilities, not least 
because adding a regular tetrahedron to any face produces a new deltahe­
dron (which, by this definition, is allowed to intersect itself). 

An infinite pile of octahedra form an infinite deltahedron. An octahe­
dron can be thought of as a triangular antiprism: two equilateral triangles 
face each other, each vertex of one opposite an edge of the other, and the 
space between filled in by 2 x 3 = 6 equilateral triangles. 

Any two polygons with the same number of edges can be opposite faces 
of an antiprism, and an infinite pile of them has a cylinder-like surface 
composed only of triangles. 
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deltoid or hypocycloid of three cusps The deltoid was first studied 
by Euler in 1745. A circle rolls inside a fixed circle. If the rolling circle is 
either one-third or two-thirds the diameter of the fixed circle, a point on 
it traces a deltoid. 

The diameter of a circle of radius two-thirds rolling round a circle of unit 
radius envelops a deltoid. 

Another construction as an envelope is this. Mark a series of numbered 
points clockwise round a circle, and another set, from the same starting 
point but double spaced and anticlockwise. Join corresponding points, and 
the envelope is a deltoid. 

A third construction is to take any triangle and draw all its Simson 
lines. Their envelope is a deltoid. 

Let the tangent at T meet the deltoid again at A and B. The length AB 
is constant and twice the diameter of the inscribed circle, and the mid-point 
of AB lies on the inscribed circle. The tangents at A and B are perpendi­
cular and meet on the inscribed circle, at the point diametrically opposite 
to the mid-point of AB, and the normals at T, A and B all meet on the 
outer circle, at its point of contact with the rolling circle. 
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derived polygons Take any polygon with an even number of sides and 
join the mid-points of the sides, in sequence. Repeat. The shape tends to 
a polygon whose opposite sides are parallel and equal in length. The 
original polygon and all the derived polygons have the same centre of 
gravity. Alternate polygons are approximately the same shape. 

If the sides are divided in a different ratio, not 1 : 1, the same phenomenon 
occurs, although the derived polygons will not alternate so simply. 

If the original polygon is not even plane, but skew, the process 
nevertheless leads to a plane polygon, with the same property and the same 
centre of gravity. 

Take any hexagon, and find the centres of gravity of each set of three 
consecutive vertices. These immediately form a hexagon whose opposite 
sides are equal and parallel in pairs: 
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On the other hand, if you take any three consecutive vertices of a hexagon 
and mark the fourth vertex of the parallelogram of which they are the 
vertices, the result is the outline of a prism: 

REFERENCE: J. H. CADWELL, Topics in Recreational Mathematics, Cam­
bridge University Press, Cambridge, 1966. 

Desargues's configuration Take two triangles which are 'in perspec­
tive': thatis, the lines joining corresponding vertices pass through a point. 
Then pairs of corresponding sides meet in three points which are collinear. 

Desargues's theorem, as this is called, can be proved by thinking of it as 
an essentially three-dimensional figure. The planes ABC and DEF will 
meet in a line, L. Planes ABC and ABED already meet in the line AB, 
and planes DEF and ABED already meet in the line DE. Therefore all 
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three of these lines meet at P, the common point of the three planes, which 
lies on 1. Similarly, AC and DF meet at R, on L, and CB and FE meet at 
Q, on 1. When the three-dimensional figure is projected onto the plane, L 
remains a straight line. 

"p 

The figure appears to be unsymmetrical, because of the special role of 
the dashed lines in the explanation. However, this is an illusion. In fact, 
any point in the figure can be taken to be the special vertex (corresponding 
to X), and there will then be exactly three labelled intersections in the 
figure which do not lie on any of the straight lines through it: these three 
intersections will themselves lie on a line corresponding to P Q R in the 
figure. 

The converse of Desargues's theorem is also true: if the meets of pairs 
of corresponding sides of two triangles lie on a straight line, then the lines 
joining pairs of corresponding vertices pass through a point. 

Moreover, this converse is also the dual of the original theorem. In 
other words, it can be obtained by switching 'point' and 'line', 'line 
through two points' and 'meet of two lines', in the statement of the original 
theorem. 
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dodecagon dissected Here are two simple and natural ways to dissect 
a regular dodecagon into rhombuses. 

There are three shapes of rhombus in each figure, and although there are 
several ways of dissecting the polygon into these basic shapes, the propor­
tions of each shape are always the same: 6 narrow and 6 medium 
rhombuses, and 3 squares. 

These shapes can be used to construct larger copies of the same shape. 
In each of the above figures, four dodecagons are dissected into one large 
copy. Many of the rhombuses remain attached to each other in strips 
known as zones. 
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The next dissection uses pieces of only one shape, which is an equilat­
eral triangle joined to half a square. The bordered dodecagon has side 
12 times the original, and twice its area; the larger dodecagon has sides 
twice that of the original and four times its area. The bordered dodecagon 
can be extended, using the same piece, to tile the whole plane. 

dodecahedron Dodecahedra have 12 faces, and therefore include the 
regular dodecahedron, with 12 regular pentagonal faces, and the rhombic 
dodecahedron, with 12 rhombic faces. 

The regular dodecahedron has 31 axes of symmetry: 10 are threefold, 
passing through pairs of opposite vertices; 6 are fivefold, passing through 
the centres of opposite faces; and 15 are twofold, passing through the 
mid-points of opposite sides. 
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The regular icosahedron has the same number of axes of symmetry, 
but with 'vertices' and 'faces' reversed in their description. 

The relationship between the dodecahedron and the cube can be seen 
either by joining the mid-points of faces to form the vertices of three 
rectangles (whose edges are in the golden ratio) which are mutually 
perpendicular, or by choosing eight vertices of the dodecahedron which 
are the also the vertices of a cube: 

A perhaps surprising fact is that when a regular dodecahedron and a 
regular icosahedron are inscribed in the same sphere, the dodecahedron 
occupies a larger proportion of the sphere's volume. The icosahedron has 
more faces, but the faces of the dodecahedron are more nearly circular. 
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dragon curve Fold a long strip of paper, right half over left, and open 
it out to a right angle. Viewed edge-on, this is the dragon curve of the first 
order. Now, close the strip and fold it in half again, in the same direction 
as the first fold, and open it out again so that each fold is a right angle. 
Repeat this process. The results, again viewed edge on, are the dragon 
curves of the second and third orders. This is the dragon curve of the tenth 
order: 

Four dragon curves will fit together around a point, as the next figure of 
four sixth-order dragons illustrates. In each case, the angles have been 
slightly adjusted to show that the curve never actually crosses itself and so 
that you can see the individual curves. 
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dual polyhedra The dual of any of the Platonic polyhedra is formed by 
joining the centres of adjacent faces. In the resulting dual solid, each vertex 
corresponds to a face of the original, each face of the new solid to an 
original vertex, and the edges match, one for one. 

As it happens, the dual of each Platonic solid is also Platonic. The 
regular tetrahedron is its own dual, the cube and the regular octahedron 
are duals of each other, and so are the regular dodecahedron and icosahe­
dron. 

The same simple process will not work for the semi-regular or Archime­
dean polyhedra, because the centres of the faces round a vertex will not 
lie in a plane. It is necessary instead to inscribe the semi-regular polyhedron 
in a sphere and construct the tangent plane at each vertex. 

The resulting duals of the semi-regular polyhedra are not themselves 
semi-regular. However, their faces are all congruent and every vertex is 
regular, though not all faces are necessarily identical. 

The figure shows the trapezoidal icositetrahedron which is the dual of 
the small rhombicuboctahedron. The rhombic dodecahedron is the dual 
of the cuboctahedron. With the rhombic triacontahedron, a zonohedron, 
which is the dual of the icosidodecahedron, it is the only Archimedean 
dual with rhombic faces. 

duals of the semiregular tessellations Every tessellation of regular 
polygons has a dual, formed by taking the centre of each tile as a vertex 
of the dual tessellation, and joining the centres of adjacent tiles. 

Of the three regular tessellations, that of regular hexagons and that of 
equilateral triangles are duals of each other, and the tessellation of squares 
is its own dual. 
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The semiregular tessellations each have duals which are less regular. 
Thus the dual of the tessellation of squares and equilateral triangles is the 
Cairo tessellation. 

The thick lines show the dual of one of the tessellations of regular hexagons 
and equilateral triangles. 

Dudeney's hinged square-into-equilateral-triangle Henry Ernest 
Dudeney exploited dissections in many of his puzzles. This is his master­
piece. Rotate the hinged pieces one way to get the square, and the other 
way to get the equilateral triangle. Two of the hinges bisect two of the 
triangle's sides, while the third hinge and the meet of the vertices of two 
pieces divide the third side in the approximate ratio 0·982 : 2 : 1·018. 
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Dudeney made a beautiful wooden model of this dissection, which he 
was invited to demonstrate before the Royal Society in 1905, an extra­
ordinary but appropriate honour for a master-puzzler. 

Dupin cyclide All the spheres that touch three fixed spheres (each in an 
assigned manner, either externally or internally) form a continuous chain 
whose envelope is a Dupin cyclide. 

The centres of all the tangent spheres lie on a conic, so an alternative 
definition of a Dupin cyclide is the envelope of all spheres having their 
centres on a given conic and touching a given sphere. 

A third definition is as the envelope of spheres with their centres on a 
given sphere and cutting a given sphere orthogonally. 

A torus is a special case of a Dupin cyclide, and also, surprisingly, every 
Dupin cyclide is the inverse of a torus. 
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eleven-three configurations There are 31 essentially different 113 
confjgurations. In each, there are 11 lines and 11 points, with 3 lines 
through every point and 3 points on every line. These are three of them: 

REFERENCE: W. PAGE and H. L. DORWART, 'Numerical patterns and 
geometrical configurations', Mathematics Magazine, March 1984. 

ellipse An ellipse is a plane section of a cone. If the cone is thought of 
as double, extending on both sides of its vertex, then the plane of the ellipse 
cuts only one half of the cone. The plane of a cut which produces a 
parabola is parallel to a line in the surface of the cone, through the vertex, 
and the plane of a cut producing a hyperbola cuts both halves of the cone. 
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An ellipse can be drawn by fixing a loop of string around two pins, F 
and G, and a pencil. The path of the pencil as it moves, keeping the string 
taut, will be an ellipse. F and G are the foci of the ellipse. 

An ellipse also has two directrices, one for each focus. An ellipse can be 
defined as the path of a point which moves so that the ratio of its distance 
from a fixed point, the focus, to its distance from a fixed straight line, the 
directrix, is constant and less than one. 

If, instead of using two pins, the string is wrapped round another 
ellipse, the path of the pencil will still trace out an ellipse, with the same 
foci as the original ellipse. 

To draw an ellipse in a rectangle, divide one half of each of the sides 
and one half of the line joining the mid-point of a pair of opposite sides 
into an even number of parts, and find the intersections of the lines joining 
X and Y to the marked points. 

x 

y 
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An ellipse can be thought of as a squashed circle. The figure below 
shows the construction of an ellipse which is the outer circle reduced in 
height using a factor of 0·6 or alternatively, the inner circle stretched 
horizontally. 

To paper-fold an ellipse, draw a circle and mark a point inside it. Fold the 
paper so that the circumference falls on the marked point, and crease 
firmly. Repeat, using different folds. The creases will envelope an ellipse. 

I , , , . , 

I 

, , , , 

"""" 

The following method of drawing an ellipse was discovered by Leonardo 
da Vinci. Cut out a triangle ABC. Draw two axes, which need not be 
perpendicular, on a piece of paper, and move the triangle so that one vertex 
moves along one line and another moves along the second line. The path 
of the third vertex will be an ellipse. 
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A special case of this construction occurs when a ladder slips against a 
wall. Any point on the ladder, such as the foot of a person still standing 
on it, will move in a portion of an ellipse. This is the basis of a commercial 
instrument for drawing an ellipse using trammels. Two points of a rod 
slide in two grooves, and the path of a point on the rod is an ellipse. 

The tangent to an ellipse makes equal angles with the lines joining the 
point of contact to the foci. 
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This can be inferred mechanically by considering a small weight sliding 
on a string attached to two pins. The path of the weight is an ellipse, by 
definition. At its lowest point the tangent will be horizontal, and provided 
the weight slides smoothly on the string, the angles of the string to the 
horizontal will be equal because equal tensions are required if the weight 
is not moving. So, the tangent makes equal angles with the lines joining 
the point of contact to the foci. 

equal incirdes theorem The rays from X are chosen so that the 
triangles XAB, XBC, XCD, and so on, all have equal incircles. Then 
the triangles XAC, XBD, and so on also have equal incircles. 

Similarly, triangles XAD, XBE, and so on will also have equal 
incircles, as will triangles XAE and XBF. 

x 

F 

equiangular or logarithmic spiral Discovered by Descartes in 1638, 
it cuts any radius through the origin at the same angle. If that angle is 
called p, then the polar equation of the spiral is r = a exp( () cot p). 
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It was studied by Jakob Bernoulli, who was so impressed by its 
tendency to appear as transformations of itself that he left instructions that 
the curve be engraved on his tomb, together with the words Eadem mutata 
resurgo ('I shall arise the same though changed'). 

Its evolute is an equal equiangular spiral, and so is its inverse with 
respect to the origin. If a light source is placed at the origin, then its caustics 
by reflection and by refraction are also identical equiangular spirals. 

It is similar to itself, in the sense that if any part of the curve is blown 
up or reduced, it is identical to another portion of the same curve. 

If the spiral is rolled along a straight line, then the path of the origin 
of the spiral, called its pole, is another straight line. The length of the curve 
from the pole (call it point 0) to the point X, is equal to X T, where T is 
the starting point of the pole and TO X is a right angle. 

T 

The equiangular spiral occurs again and again in nature. For example, the 
whorls of the nautilus shell are equiangular spirals. However, patterns 
such as those in sunflower heads are only approximately equiangular 
spirals; they are better described by Fermat spirals. 

equilateral triangle tilings One of the regular tessellations is composed 
of identical equilateral triangles. Because the triangles in that tessellation 
form strips, there are in fact an infinite number of tessellations of the plane 
composed of the same triangles, but of a less regular nature. 
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If the triangles can be of several sizes, there are many more possibilities. 
The following figure shows three different sizes of equilateral triangle 
tessellating. 

Euler line In any triangle, the circumcentre 0, the orthocentre H, and 
G, the meet of the medians, lie on a straight line. In addition, GH = 20G. 
Leonhard Euler published this celebrated theorem in 1765. 
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eyeball theorem The tangents to each of two circles from the centre of 
the other are drawn. Then the lines AB and XY are equal in length. 



F 
face-regular polyhedra Many polyhedra can be constructed whose 
faces are regular polygons, but which have little or no other symmetry. 

There are five triangles round each vertex of a regular icosahedron, 
forming a shallow pentagonal pyramid. Slice off three such pyramids and 
replace them by regular pentagons, and the result is the tridiminished 
icosahedron. 

The figure below is known as bilunabirotunda. 
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Viktor Zalgaller proved, in 1966, that apart from the regular and 
semiregular polyhedra and the regular prisms and anti prisms, there are 
just 92 convex polyhedra with regular faces. He named them all, including 
the gyrofastigium, metabidiminished rhombicosidodecahedron and hebe­
sphenomegacorona. Of the 92, twenty-eight are simple in the sense that 
they cannot be cut into two other face-regular polyhedra. 

Fano plane A finite projective plane consists of points and lines, with 
the same number of lines through every point and the same number of 
points on every line. 

The figure shows the smallest finite projective plane, the Fano plane, which 
contains 7 points and 7 lines, with 3 points on every line and 3 lines 
through every point, and is therefore denoted by 73, It illustrates the fact 
that not all finite projective planes can actually be drawn using geometri­
cally straight lines. The Fano plane can at best be drawn geometrically so 
that all the lines but one are actually straight; the circle is the seventh 'line'. 

The total number of points in a finite projective plane is necessarily 1 
+ pn + p2n, where p is a prime number; there will be 1 + pn points on every 
line, and 1 + pn lines through every point. For the Fano plane, p = 2 and 
n=1. 

The Fano plane is the only 73 configuration. There is also only one 83 

which can also be drawn with all but one of the lines geometrically straight. 
There are three 93 configurations, ten different 103 ones, thirty-one 113 
ones and two hundred and twenty-eight 123 configurations. 

Fatou dust When the point which generates a Julia set is chosen from 
outside the Mandelbrot set (or the equivalent set for a different transform­
ation), the Julia set breaks down into a set of isolated points, called Fatou 
dust after Pierre Fatou, who worked with Gaston Julia. 
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If the point is relatively near the boundary of the Mandelbrot set, the Fatou 
dust is thick, and resembles the Julia sets for nearby points within the 
Mandelbrot set. As the point moves further and further away from the 
Mandelbrot set, the dust becomes thinner and thinner. 

fault-free rectangles A dissection of a rectangle into several smaller 
rectangles may include a straight line, called a fault, joining two sides, 
which divides the original rectangle into two smaller rectangles. Dissec­
tions which do not include such lines are called fault-free. A division into 
3, 4 or 6 pieces cannot be fault-free. The figure shows a fault-free division 
into 5 parts and a fault-free division of a 5 by 6 rectangle into fifteen 2 by 
1 rectangles. 
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Fermat or parabolic spiral Named after Pierre de Fermat, who studied 
it in 1636; it is alternatively called 'parabolic' because its polar equation 
is r2 = a 2B, which superficially resembles the equation for the parabola: 
y2 = ax. 

Robert Dixon explains how Fermat spirals form more accurate models of 
the form of plant growth, for example the head of a daisy, than the usual 
explanation based on the equiangular spiral: the property of the Fermat 
spiral which is relevant to constructing daisies is that successive whorls 
enclose equal increments of area. 

This is a daisy head constructed on the basis of Fermat spirals: 
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REFERENCES: R. DIXON, 'The mathematics and computer graphics of 
spirals in plants', Leonardo, Vol. 16, No.2, 1983; R. DIXON, Math­
ographics, Basil Blackwell, Oxford, 1987. 

Fermat point of a triangle Fermat challenged Torricelli to find the 
point whose total sum of distances from the vertices of a triangle is a 
minimum. The problem is quite practiCal, since if there were three villages 
at the corners of the triangle, it amounts to asking for the shortest length 
of road which you would need to build to join all the villages. 

If all the angles of the triangle are less than 120° the desired point, the 
Fermat point F, is such that the lines joining it to the vertices meet at 120°. 
If the angle at one vertex is at least 120°, then the Fermat point coincides 
with that vertex. 

The Fermat point can be found by experiment. Let three equal weights 
hang on strings passing through holes at the vertices of the triangle, the 
strings being knotted at one point. The knot will move to the Fermat point. 

Alternatively, construct an equilateral triangle on each side of the 
triangle. Then the three lines joining the free vertices of each new triangle 
to the opposite vertex of the original triangle will all pass through the 
Fermat point, which is also the common point of the circumcircles of the 
equilateral triangles (see the figure on the next page). Moreover, these 
three lines are all of equal length and each equal to the total length of the 
road network. 

If equilateral triangles are drawn on each side facing inwards as in a 
variant of Napoleon's theorem (as shown in the figure on the next page), 
then the lines joining their free vertices to the opposite vertices of the 
original triangle (A Be) also meet at a point, P. This point has an extremal 
property: if the angle at C is less than 60°, and the angles at A and Bare 
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both greater than 60°, then P A + PB - PC is a minimum at that point. If 
the condition is not satisfied, the minimum is attained at either A or B. 

If the sides of the triangle are of equal length to a, b, and c, and the 
distances of the Fermat point from the vertices are x, y and z, then there 
is a point inside an equilateral triangle of side x + y + z whose distances 
from the vertices are a, band c. 

REFERENCE: DAVID NELSON, 'Napoleon revisited', Mathematical 
Gazette, No. 404, 1974. 

Feuerbach's theorem Feuerbach proved, by calculating their radii and 
the distances between their centres algebraically, that the nine-point circle 
touches the incircle and each of the excircles of the triangle. This adds 
another 4 significant points to the nine-point circle. 

The nine-point circle of ABC is also the nine-point circle of the 
triangles AHB, BHC and CHA, and therefore touches the incircles and 
excircles of each of these triangles. This adds 3 x 4 = 12 more points, giving 
a grand total of 25. There are more ... 
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If T is one of the points where the nine-point circle touches the other 
four circles, and if A, Band C are the mid-points of the sides, then one of 
the lengths T A, TB, and TC is the sum of the other two. 

fifty-nine icosahedra The tetrahedron and cube cannot be stellated 
because their faces, on being extended, will not again intersect. The 
octahedron has one stellation, the stella octangula, and the dodecahedron 
has three: the small stella ted dodecahedron, the great dodecahedron, and 
the great stella ted dodecahedron. 

The icosahedron, in contrast, has no less than 59 stellations, enum­
erated by M. Bruckner, A. H. Wheeler and H. S. M. Coxeter. If a solid 
icosahedron is cut by plane cuts from a solid block of wood, 1 + 20 + 30 
+ 60 + 20 + 60 + 120 + 12 + 30 + 60 + 60 pieces are created. These can 
be replaced symmetrically to form 32 re{lexible polyhedra (that is, having 
planes of symmetry) and 27 solids which come in right-handed and 
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left-handed pairs. These include the original icosahedron, the great ico­
sahedron, and the compounds of five octahedra and ten tetrahedra. The 
figure shows the third stellation which is a deltahedron. 

REFERENCE: H. S. M. COXETER, The Fifty-nine Icosahedra, Springer­
Verlag, Berlin, 1938. 

figure-of-eight knot or four-knot This is the second simplest knot, 
with only four crossings, alternately under and over. Join the ends of the 
knot on the left, and it can be arranged as in the second pattern. 

The next sequence shows how the knot above, with one apparent vertical 
axis of symmetry, is transformed into the third form, which has both a 
vertical and a horizontal axis of symmetry, and finally into a symmetrical 
path on the surface of a sphere. 
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REFERENCE: G. K. FRANCIS, A Topological Picture Book, Springer-Ver­
lag, New York, 1987. 

five circles theorem Five circles have been drawn with their centres on 
the same fixed circle, each of them intersecting the next circle on the fixed 
circle. By joining the remaining points of intersection, a star pentagon is 
formed, each of whose vertices lies on one of the five circles. 
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fixed point theorems The figure shows a simple example of a fixed 
point theorem. Two maps have been placed one on top of the other. They 
show identical regions, but one is larger than the other. The smaller one 
can be thought of as the result of shrinking the larger one onto a part of 
itself. This fixed point theorem says that there is one point on the small 
map which is directly above the same point on the larger map. 

This point (there can be only one) can be found by drawing a third map 
bearing the same relationship to the smaller map which the smaller map 
bears to the larger, and then repeating. The sequence of maps tends to a. 
limiting point, which is the point sought. 
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floating bodies in equilibrium Stanislav Ulam asked whether a sphere 
is the only solid of uniform density which will float in water in every 
position. To the simpler problem in two dimensions the answer is 'No!'. 
A cylinder of density 0·5 with either of these cross-sections will float in 
water, without tending to rotate, whatever its orientation. 

REFERENCE: R. D. MAULDIN (ed.) The Scottish Book, Birkhauser, Bos­
ton, 1981. 

four colour problem Any plane map can be coloured with at most four 
colours, so that any two regions with a common boundary line are 
different colours. 

A map which can be drawn with a continuous line, not taking the pen 
off the paper, and returning to the starting point, requires only two 
colours: 
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If it does not return to the starting point, it requires three colours: 

This is the simplest map requiring four different colours: 

The problem of proving that four colours are sufficient has a long and 
winding history, including 'what is probably the most famous fallacious 
proof in the whole of mathematics' announced by Kempe in 1879. For 
more than a decade it was believed to be sound, until Heawood pointed 
out the flaw in 1890. 
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Haken and Appel finally proved in 1976 that four colours are suffi­
cient, but only by using a computer program to check several hundred 
basic maps. This proof has generally been accepted by mathematicians, 
but only with reluctance, because it is not open to the traditionalline-by­
line examination that mathematicians have hitherto taken for granted. 

Fregier's theorem Choose any point P on a conic, and make it the 
vertex of a right angle which rotates about P. Then the lines through the 
points of intersection, AA, BB, and so on, will all pass through a fixed 
point X which lies on the normal at P, that is, on the line through P 
perpendicular to the tangent at P. 

A 

frieze patterns A frieze consists of a motif repeated ad infinitum. If the 
whole frieze has rotational or reflectional symmetry, then so does the motif 
of which it is composed. 
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The motif can have no symmetry at all, symmetry about a horizontal 
or vertical line, or both together, or half-turn symmetry. When motifs are 
combined in sequence in a frieze, glide reflections, in which the motif 
moves along the frieze while turning over, produce two more possibilities, 
making seven types of symmetry in all. 

25252 
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Gaussian primes If p and q are integers, then p + iq, where i = g, is 
a Gaussian integer. Gaussian integers are either prime, having no proper 
factors which are also Gaussian integers, or they can be decomposed into 
Gaussian primes. 

III 

II 

This is the pattern of Gaussian primes whose norms -VCp2 + q2) are less 
than 500, drawn on an Argand diagram. 
REFEREN CE: R. K. GUY, Unsolved Problems in Number Theory, Springer­
Verlag, New York, 1981. 

geodesic dome Geodesic domes were invented by the engineer-architect 
Buckminster Fuller. They have the advantage that they can be placed 
directly on the ground as a complete structure. They also have few 
limitations of size. 

Here is a simple example. Take a regular dodecahedron and its 
circumsphere. Raise the centre of each face to the circumsphere, and join 
it by five new equal edges to the vertices of the face. The resulting 
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polyhedron has 60 triangular faces, each being isosceles, with edges in the 
approximate ratio 1 : 1 : 1·115. 

Instead of being divided by joining the vertices to the centre of the face, 
suitably raised, the face may be divided into a larger number of triangular 
pieces and the vertices of these triangles raised to the circumsphere. In the 
figure below, each face of an icosahedron has been formed from sixteen 
smaller almost-equilateral triangles. 

geometrical illusions If you sketch a figure, it should not always be 
taken at face value. Figures which are geometrically correct can appear to 
show something different, and ones which look plausible can in fact be 
geometrically wrong. 

The first figure shows lines which appear to be different in length, but 
measurement shows that AB and Be are equal. 
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The second figure has two shaded areas which are equal, although the 
central disc looks a larger area than the ring. It is easy to prove that they 
are equal. The circles are drawn in radii increasing by 1 unit. The area of 
the central disc is 1t.32 square units and the ring 1t.52 -1t.42 = 1t.32 square 
units. 

A C 

IS7 
B 

golden ratio, golden section or divine proportion If a star pentagon 
is inscribed in a regular pentagon, the golden ratio naturally appears. The 
same ratio appears in the dodecahedron and the icosahedron, which Euclid 
constructed using the division of a line in the 'extreme and mean ratio', as 
he called it. 

A CE-----\--~:....---~ 0 

E 

Each of the ratios AQ/QD, AP/PQ and AD/Be is equal to 
~(1 + -{S), about 1·618. This is usually denoted by the Greek letter <I> (or 
sometimes t). 
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This ratio has the property that <I> = 1/(<1> -1) or, expressed in another 
way, <1>2 = <I> + 1 

A 'golden rectangle' whose sides are in this ratio can therefore be 
dissected into a square and another rectangle of the same shape. The 
process can be repeated ad infinitum. 

An equiangular spiral can be drawn through these vertices. A sequence of 
circular quadrants is a good approximation to the spiral. The true spiral 
does not actually touch the sides of the rectangles. 
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Greek cross tessellation and dissection The Greek cross tessellates in 
a very simple manner, which leads naturally to an infinite number of 
dissections of the cross into a square. Take any four corresponding points 
of the tessellation, and a dissection of the cross into a square is obtained. 

A necessary condition for this simplicity is that the cross is composed of 
five unit squares where five is the sum of two squares: 5 = 22 + 12. This 
condition is not, however, sufficient. All the other pentominoes (shapes 
formed by laying five identical squares against each other, complete edge 
to complete edge) satisfy the same condition, but only some of them will 
tessellate, leading to similar dissections. 



hairy ball theorem This is an example of a fixed point theorem. 
Imagine that you are combing a tennis ball which is hairy rather than fluffy. 
You attempt to comb it so that the hairs are all lying flat on the surface 
and so that they change direction smoothly over the whole surface, but 
you fail. 

The diagram shows one near-success. You brush upwards from the 'south 
pole' to the 'north pole', as if brushing along lines of longitude. The entire 
surface is smoothly combed except at these two points, where a tuft and 
a hole appear. 

Since the Earth is a ball, and the wind at any point has a direction, as 
if the air were being combed over the Earth's surface, it follows that there 
is always a cyclone somewhere. 

Harborth's tiling Harborth answered the question: 'Are there sets of 
tiles which can be used to tile the plane in exactly N ways?' 
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Given these two shapes of tile, a rhombus and 6 rhombuses stuck together, 
so that 17 of the rhombuses fit round a point, there are exactly 4 ways in 
which these tiles can tile the plane. 

This is one way. Two others are obtained by placing the pair of complex 
pieces adjacent, or separated by 1 and 4 rhombuses, and the fourth uses 
just one of the complex pieces. 

To construct two tiles that will tile the plane in n ways, use rhombuses 
of which 6n - 7 will pack around a point. The~complex piece is made by 
sticking 2n - 2 rhombuses together, around a point. 
REFERENCE: H. HARBORTH, 'Prescribed numbers of tiles and tilings', 
Mathematical Gazette, No. 418,1977. 
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harmonic ratio Take any two points A and B, and a third point X on 
the line joining them. Draw any two lines you choose through A and B, to 
meet at P, and draw PX. Draw AQ and BR to meet on PX. QR cuts AB 
in another point Y, whose position depends only on the original positions 
of A, B and X, and not at all on the choice of P, Q and R. 

A x B y 

Moreover, the cross-ratio of A, B, X and Y is equal to -1: 

AY. XB =-1 or 
YB.AX 

AX 
XB 

The negative sign is because YB is measured in the opposite direction to 
the other lengths. X and Yare called harmonic conjugates with respect to 
A and B, and, conversely, A and B are harmonic conjugates with respect 
to X and Y. 

harmonograph This old Victorian entertainment is revived every few 
years by some enterprising manufacturer. It requires two pendulums 
which, in the simplest version, are arranged so that one moves the pen and 
the other moves the table to which the paper is attached. The combined 
effect of the two pendulums produces a complicated motion which steadily 
decays due to the effects of friction. Therefore each path, on each circuit, 
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is a short distance away from the path on the previous circuit, the whole 
movement tending eventually to a point. 

Hauy's construction of polyhedra The Abbe Rene-Just Haiiy pub­
lished, in 1784, his 'Essai d'une theorie sur la structure des crystals 
appliquee a plusieurs genres de substances crystallisees', in which he 
hypothesized how certain crystals could be built up by regular repetition 
of a basic unit. These figures show how Haiiy ingeniously used small cubic 
building-blocks to construct the octahedron and rhombic dodecahedron. 

Euclid used the same relationship between the cube and pentagonal 
dodecahedron in Book XIII of his Elements to construct a regular dodeca­
hedron. 
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helicoid When a straight line moves in a screw motion about an axis at 
right angles to it, it sweeps out a helicoid. 

This is a minimal surface. There is an extraordinary connection 
between the helicoid and the catenoid. The helicoid can be wrapped 
around the catenoid, as a piece of paper is wrapped around a cylinder. 
The axis of the helicoid wraps round the circle of smallest cross-section of 
the catenoid. The second diagram shows how a portion of the helicoid 
wraps once around the catenoid. 
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helix Imagine a circle whose centre moves steadily along a line perpen­
dicular to the plane of the circle. The path of a point which rotates steadily 
round this circle is a helix. In other words, a helix is the result of a screw 
motion in a fixed direction. 

Depending on the pirection of rotation, the helix may be left-handed 
or right-handed. The figure shows a long cylinder whose axis is helical. 

A helix can also be imagined as a curve on the surface of a circular cylinder, 
which cuts the generators (the straight lines in the surface of the cylinder, 
parallel to its axis) at a constant angle. 

Helices are common in everyday life, because a helix has the useful 
property that it is transformed into itself by rotating and moving forwards 
or backwards along its axis. It is therefore the form of the edges of bolts, 
cylindrical screws and worm gears, as well as a spiral staircase which 
allows easy movement upwards in a confined space. The curved edges of 
these shapes are helices, and the curved surfaces are portions of helicoids 
or cylinders. 

Henon attractor First investigated by the French mathematician 
Michel Henon, using an HP-65 programmable calculator, this famous 
mapping represents the behaviour of many dynamical systems in which 
no energy is lost, such as asteroids orbiting the Sun. 

It is defined by the transformation: 

x ~ y + 1 - ax2, y ~ bx 
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Provided the initial point (x, y) is not too far from the origin, after a 
few repeated applications of the above transformation the point will come 
to lie within this attractor. With each iteration the point jumps from one 
curve to another, or to another part of the same curve, in a chaotic manner. 

Magnifying the map on the computer screen, as in the second figure, 
shows that each curve is composed of yet finer lines, which in turn are 
composed of finer lines still ... 
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This map shows the Henon attractor for Henon's original values, a = 1·4 
and b = 0·3. If all the points on this straight line are transformed by the 
Henon process, the line itself is transformed by a process of stretching and 
folding, rather like the stirring of one liquid into another, into a shape 
much like the Henon attractor: 



98 • HEPTAHEDRON 

heptahedron This is a one-sided surface made from four triangles and 
three quadrilaterals which is topologically equivalent to (that is, it can be 
continuously deformed into) Steiner's Roman surface, and is much easier 
to make. 

For a regular model, start with a regular octahedron and leave out every 
other face. The four remaining triangles meet only at their vertices. Now 
insert the three squares which are cross-sections of the original octahedron 
through its centre and the edges of its faces. The resulting polyhedron is a 
closed surface with no boundary, but is only one-sided. 

The regular heptahedron can plausibly be classified as a semiregular 
(Archimedeanl polyhedron, because all its faces are regular and all its 
vertices identical. Unlike the standard Archimedean solids, it is not convex 
but intersects itself, along the lines where the three squares cross, and even 
has a triple point at the centre. 

Several other Archimedean polyhedra can be constructed in the same 
way. This model has the square faces, and the hexagonal faces through its 
centre, of the cu boctahedron. 
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Heron's problem In his Catoptrica, Heron of Alexandria assumed that 
light travels by the shortest path (in terms of distance), and proved that 
the angles of incidence and reflection at the surface of a mirror are equal. 

p 

o 

0' 

He did so by the same method used today. Reflect the point Q in the 
mirror. The shortest distance PQ will equal the shortest distance PQ', 
which is a straight line. Reflecting Q' into Q shows that the two angles are 
equal. 

The same principle of reflection solves the problem of finding a point 
T on a line such that the difference between the distances PT and TQ, P 
and Q being on opposite sides of the line, is as great as possible. T is chosen 
so that the reflection of Q lies on PT. 

p 

o 
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Hilbert's space-filling curve The figures show the first four approxi­
mations to the Hilbert curve. The first two show a background of squares 
which are used to draw the path of the curve. At every stage each square 
in the previous stage is divided into four smaller squares, and the path is 
divided so as to pass through the centre of each new square, and replicate 
on a smaller scale the pattern of the path in the previous stage. In the limit, 
the result is Hilbert's space-filling curve: a continuous curve passing 
through every point of the square. 
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A similar curve which passes through every point of a cube can be 
constructed in a rather more complicated manner. This is the first stage: 

L /1 / 
~ /1 7 
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II 
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hinged tessellations Certain tessellations, if they are thought of as 
being composed of solid pieces hinged at their vertices, and separated by 
empty space, can be opened out (or closed up) as in these examples. This 
tessellation of squares and rhombuses is a tessellation of squares, shown 
near both extremes and at intermediate positions. At two other intermedi­
ate positions, each rhombus is equivalent to a pair of equilateral triangles. 
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This tessellation of hexagons and triangles hinges in a similar manner. 
It opens to reveal diamond-shaped spaces which become the squares in a 
tessellation of hexagons, squares and triangles. If the equilateral triangles 
continue their rotation, it closes down again to a tessellation of hexagons 
and triangles, each triangle having rotated through 180°. 
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REFERENCE: DAVID WELLS, Hidden Connections, Double Meanings, 
Cambridge University Press, Cambridge, 1988. 

Holditch's theorem Take a smooth, closed convex curve and let a 
chord of constant length slide around it. Choose a point on the moving 
chord which divides it into two parts, of lengths p and q. This point will 
trace out a new closed curve as the chord moves. Then, provided certain 
simple conditions are satisfied, the area between the two curves will be 
rrpq. 

REFERENCE: WILLIAM BENDER, 'The Holditch Curve Tracer', Mathe­
matics Magazine, March 1981. 

hollow tilings When a single type of tile inevitably leaves spaces when 
used in a tessellation by itself, it is tempting to accept the spaces as a feature 
of the pattern (of course, they could also be considered as a new shape of 
tile in their own right). 
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This tessellation was produced by Albrecht Durer, who, like many 
Renaissance artists, was fascinated by tilings. 

Here is another regular close-packing of pentagons, in which each penta­
gon touches six others. 

honeycombs In 1926, Petrie and Coxeter discovered what they called 
'regular skew polyhedra' - structures with regular faces and vertices which 
fill space. In the first case, there are six squares round every vertex, in the 
next, four hexagons, and in the last, six hexagons round every vertex. 
Because of their regularity, Coxeter even suggested they should be counted 
as regular infinite polyhedra; if one includes the three regular plane 
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tessellations, which can also be considered as infinite polyhedra, Coxeter's 
interpretation brings the number of regular polyhedra to fifteen. 

The first two figures are dual, in the sense that the vertices of each are the 
centres of the faces of the other. The third, like the tetrahedron, is self-dual. 

The figure with six squares round each vertex can also be thought of 
as a standard division of the plane into identical cubes in which every plane 
is coloured like a chessboard, and all the squares of one colour have been 
removed. It not only divides space into two congruent halves, but has the 
extraordinary feature that it is flexible and, if made from individual square 
faces without some form of stiffening, will collapse down into a plane. 

The next figure is a polyhedron whose vertices are all congruent, and 
which has five squares at each vertex. It lies, as it were, between the square 
sponge and the square plane tessellation, and has the same relationship to 
the true sponges that a frieze pattern has to a tessellation. 
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In 1967 J. R. Gott published details of some further, similar, repeating 
structures, with a slightly different definition. His set included Petrie and 
Coxeter's, and the previous figure, and three more. One has eight triangles 
round each vertex, another has ten triangles, and another five pentagons. 
REFERENCE: J. R. GOTT, 'Pseudopolyhedrons', American Mathematical 
Monthly, May 1967. 

hyperbola The hyperbola is a cross-section of a double cone, cutting 
both halves of the cone. 

A hyperbola has two real asymptotes: two lines which it approaches more 
and more closely without ever quite reaching them. (An ellipse has two 
imaginary asymptotes.) 
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Like an ellipse, a hyperbola has two foci. For any point P on the hyperbola, 
I PA- PB I is constant. 

Like the ellipse and the parabola, the hyperbola may also be defined 
by its focus-directrix property. Choose a point to be one focus and a 
straight line to be its directrix. The two branches of the hyperbola are each 
the path of a point moving so that the ratio of its distance from the focus 
to its distance from the directrix is greater than one. 

The hyperbola can be drawn mechanically by a method similar to, but 
less simple than, that for the ellipse. Let AX be a rod rotating about A, 
which will be one focus of the hyperbola. Attach a length of string to the 
end of the rod and to the other focus, B, and keep it taut by a pencil, shown 
here at P, held against the rod. As the rod rotates, P traces out one branch 
of a hyperbola. 

x 
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When a ray of light passes through one focus of a hyperbolic mirror, it is 
reflected as if it had come from the other focus: 

The hyperbola can be constructed as an envelope. Here is one method. 
Draw a circle and choose a point F, to be one focus of the hyperbola. The 
diameter through F will be the axis of the hyperbola. Draw any line 
through F to cut the circle in two points, and draw the perpendicular lines 
through the cutting points. These lines are tangents to the hyperbola, one 
to each branch, and by repeating the construction for different lines 
through F, the hyperbola appears. 

The hyperbola has innumerable other properties. For example, if the 
tangent to the hyperbola at T cuts the asymptotes at P and Q, and the 
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asymptotes meet at 0, then 0 P . 0 Q is constant; and PT = T Q, as 
Apollonius showed. 

hyperbolic geometry Euclid in his Elements assumed that: 

If a straight line falling on two straight lines makes the interior angles 
on the same side less than two right angles, the two straight lines, if 
produced indefinitely, meet on that side on which are the angles less 
than two right angles. 

This is his famous Fifth Postulate, which seems complicated enough to be 
a theorem, but which neither Euclid nor any of his successors was able to 
prove. 

Bolyai and Lobachevsky independently considered the possibility that 
it was not provable in principle and that it would make sense to deny it. 
They each supposed that there were two distinct lines WPX and ZPY, 
called limit rays, through a point P, which do not meet a line AB, such 
that any line through P within the angle XPY meets AB. Of the lines 
through P within the angle XPZ, not one of them will meet AB. These 

y 

A B 
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lines they considered as 'parallel' to AB, and so there are an infinite 
number of lines through P parallel to AB. 

This geometry was named 'hyperbolic' in 1871 by Klein. In hyperbolic 
geometry, the angle sum of a triangle is always less than two right angles. 
If the triangle is small, then its angles are nearly two right angles. 

A triangle is defined by its angles; in hyperbolic geometry there are no 
such things as similar triangles, because two triangles with the same angles 
are congruent. The area of a triangle is equal to K(1t - a + P + r), where 
K is a constant and a, P and rare the angles of the triangle. The expression 
1t - a + P is called the defect of the triangle. Polygons also have their own 
defect; two polygons are mutually dissectable if they have the same defect. 

A triangle can have three zero angles, all its sides being limit rays of 
infinite length, and its defect is then a maximum, two right angles. Its area, 
however, is finite. (Coxeter records that Lewis Carroll could not bring 
himself to accept this conclusion, and concluded instead that non­
Euclidean geometry must be nonsense.) 

The circumference of a circle is not proportional to the radius, but 
increases much faster than the radius, roughly exponentially. However, it 
is roughly proportional for small radii. 

In the limit, as the constant of hyperbolic geometry tends to infinity, 
hyperbolic space becomes 'flat' and Euclidean. Hence hyperbolic geometry 
includes Euclidean geometry as a special case. Lobachevsky realized this, 
and called his new geometry 'pangeometry'. 

hyperbolic paraboloid A saddle-shaped quadric surface whose cross­
sections in two perpendicular directions are parabolas, and in the third, 
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perpendicular direction, hyperbolas. The asymptotes of all these hyper­
bolas form two planes passing through the common axis of all the 
parabolas. Like the hyperboloid of revolution, its surface contains two sets 
of straight lines, called its generators. 

A model can be constructed by starting with a skew quadrilateral in 
three-dimensional space. Two threads joining the mid-points of opposite 
sides will meet. If the sides are quartered, then pairs of lines joining 
matching quartering points will also meet each other, and will also meet 
the lines joining the mid-points. By continuing this process, the surface is 
generated, each thread being a generator. 

The figure shows the skew quadrilateral with one set of generators and 
one line of the second set, the one at the saddle point. 

L 

N~-f' 

Another method of making a model is described by McCrea. Draw a 
rectangle, and construct parabolas of equal height on each side. Divide a 
diagonal into as many equal parts as you choose, and hence find the points 
of division of the parabolas, such as Land N. Bend two sides up and two 
down, and join the points, as in the second diagram. This model shows 
the role of the parabolas more clearly. The two sets of lines are the 
generators, as before. 
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A third approach, mathematically important but impractical, is to start 
with three skew lines which are parallel to one plane, but not to each other. 
Through any point on one of these lines, there will be a unique line which 
cuts both the other lines. The set of all such lines is one set of generators 
of a hyperbolic paraboloid. The set of lines crossing all the lines of this set, 
which includes the three original lines, is the second set of generators. 
REFERENCE: W. H. McCREA, Analytical Geometry of Three Dimensions, 
Oliver and Boyd, Edinburgh, 1947. 

hyperboloid of one sheet Stick a needle through a match, and stick 
another match on the end of the needle. If the matches are parallel, then 
when the first match is rotated on its long axis the second will trace out 
the surface of a cylinder. But if they are not parallel, and if they are not in 
the same plane, the second will trace out a hyperboloid of revolution of 
one sheet. (Sir Christopher Wren was the first to realize that the surface 
of the hyperboloid of revolution of one sheet contains sets of straight lines.) 
The positions of the second match as it rotates define one set of generators 
of the surface. No two generators from this set ever meet each other, and 
no three can be parallel to the same plane. 

It may seem intuitively obvious that if the angle of the second match 
is switched, so that it points backwards instead of forwards, to the same 
degree, then it will trace out the same surface. It does, and its positions are 
a second set of generators, each of which intersects every line in the first 
set (with the exception of one, opposite, line in the first set, to which it is 
parallel). 
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Two identical surfaces of this type can be used as the basis for 
skew-bevel gears, by which a rotating axis can transfer its motion to an 
axis which is not parallel to it, and does not intersect it. The surfaces are 
designed so that a generator in one surface aligns with a generator in the 
second, and the surfaces both roll and slide against each other. 

This hyperboloid of revolution naturally has circular cross-sections 
perpendicular to the axis of rotation. The general hyperboloid of one sheet 
has elliptical cross-sections. 

A practical method of constructing the surface is to take two circles, 
or ellipses, parallel and on the same axis, with their axes parallel. Divide 
each ellipse into the same number of parts, by marking equal angles from 
the centre. If each point in the upper ellipse is joined to the point N steps 
ahead in the lower ellipse, the lines will form the hyperboloid of one sheet. 
The second set of generators is added by counting back N steps each time. 

If a model is made from rigid wires, rather than threads which require 
tensioning, then a remarkable feature can be demonstrated. If the ellipses 
are brought closer together, without rotating relative to each other, so that 
the wires slide through one set of holes, then the surface remains a 
hyperboloid, becoming, in the limit, an ellipse and its envelope of tangents. 

hypercube or tessaract A hypercube is the four-dimensional analogue 
of a three-dimensional cube. Just as the latter can be obtained by dupli­
cating a square, moving the duplicates apart, and joining corresponding 
edges, so can a hypercube - by separating duplicate three-dimensional 
cubes. 

On the left below are two congruent cubes, in projection, with corre­
sponding edges joined. On the right, one cube is inside the other; each face. 
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of the outer cube, plus the matching face of the inner cube and the four 
lines joining them, make up one of the cubical faces of the hypercube. 
Counting the original two cubes, this is a total of 8 cubical faces, or cells. 
It has 24 plane faces, 32 edges and 16 vertices. 

The hypercube has eight main diagonals, joining pairs of opposite 
vertices. These divide into two sets of four, the diagonals in each set being 
mutually perpendicular. The dual of the hypercube is the 16-cell. 



I 
incentres and excentres of a triangle A unique circle touches the three 
sides of a triangle internally, and three circles each touch one side extern­
ally and the two others internally. 

The centres of these circles are the meets of three internal and three 
external bisectors of the angles of the triangle, which form a larger triangle, 
with its altitudes. 

If the radii of these circles are r, ra, rb and reo then 

Also, if the radius the of the circumcircle is R, then ra + rb + rc - r = 4R, 
and the area of the triangle is -vra rb rc r. 

The lines joining the vertices to the points of contact of the inscribed 
circle meet at Gergonne's point. The lines joining the vertices to the 
internal points of contact of the escribed circles meet at Nagel's point. 
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Invert the figure with respect to any of the four circles, and that circle 
and the sides of the triangle become four equal circles. 

The internal bisectors of a triangle define another circle, through the 
points where they meet the opposite sides. This circle has the property that, 
of the chords cut off by the sides of the triangle, one is equal to the sum 
of the other two. 

incomparable rectangles Two rectangles are called incomparable if 
neither of them will fit inside the other, with their sides parallel. This is 
equivalent to saying that one of the rectangles is both the longest and the 
narrowest. 
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What is the smallest number of mutually incomparable rectangles that 
will tile a rectangle? At least 7 tiles are necessary, and at most 8. This 
13 x 22 rectangle is the smallest rectangle (whether measured by area or 
by perimeter) with integer sides that can be incomparably tiled. 

interlockingpolyominoes A polyomino is formed by laying a number 
of identical squares against each other, complete edge to complete edge. 

How small can a polyomino be, if a set of duplicates makes a tessella­
tion which is interlocking? The question is ambiguous, because it is not 
clear whether they should interlock in pairs, or only when they are all in 
place. 

These solutions were found by Bob Newman. The first set interlock 
individually. The second, a well known pattern, and the third interlock 
when all the tiles are in place, and also happen to be symmetrical. The 
fourth pattern involves turning half the tiles over, but uses only 12 units 
per tile. 
REFERENCE: DAVID WELLS, Recreations in Logic, Dover, New York, 
1979. 
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intersecting chords of a circle How simple can an interesting figure 
be? In this figure, two chords of a circle intersect, andAX.XC = BX.XD. 

If X is outside the circle, and one of the tangents from X to the circle 
touches it at T, then AX.XC = BX.XD = XT2. 

Also, 

arc AB + arc DC L AXB 
arc BC + arc DA L CXD 

If the chords are perpendicular, then, as Archimedes proved, 

arc AB + arc CD = arc BC + arc DA 

intersecting cylinders If the axes of three circular cylinders of equal 
diameter d intersect mutually at right angles, they enclose a solid of 12 
curved faces. The volume of this solid is (2 - {l)d3• 

If the tangent planes are drawn to all the generators joining vertices 
where three faces meet, the resulting figure is the rhombic dodecahedron. 

A rather simpler figure is formed when the axes of only two identical 
cylinders intersect at right angles. Archimedes and the Chinese mathemati­
cian Tsu Ch'ung-Chih both knew its volume, which can be found without 
the use of calculus: id3• 

It is possible for four such cylinders to intersect symmetrically, if their 
axes have the symmetry of the regular tetrahedron. They form a 24-faced 
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solid, an,alogous to the octahedron with inscribed cube, whose volume is: 
H3+~-I)d3. 

REFERENCE: M. MOORE, 'Symmetrical intersections of right circular 
cylinders', Mathematical Gazette, No. 405,1974. 

inversion Inversion is a transformation of a plane figure into another 
plane figure, based on a particular circle of inversion whose centre is called 
the centre of inversion. (In three dimensions, space figures can also be 
transformed into space figures by using a sphere of inversion.) 

If the radius of the circle is k, then the inverse of a point A is the point 
A' on OA such that OA.OA' = k2• 
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The circle of inversion itself, circles orthogonal to it, and straight lines 
through its centre are invariant under the transformation. In addition, 
angles are preserved, and circles and straight lines not through the centre 
of inversion are all inverted into circles. 

The transformation may be used to prove a theorem by transforming 
it into another one which is either known or obvious. For example, the 
theorem for Steiner's chain of circles can be proved by inverting the figure 
into two concentric circles, whereupon the result becomes obvious. 
Soddy's hexlet can also be inverted. Steiner knew of the process of 
inversion, but did not reveal its secrets as he stunned his colleagues with 
a series of surprising and apparently very difficult theorems! 

Peaucellier's cell can be used to invert a curve. Many well-known 
curves are inverses of each other. For example, if a parabola is inverted 
taking its focus as the centre of inversion, a cardioid results; if it is inverted 
with respect to its vertex, the result is the cissoid of Diocles. 

The next two figures are related by spherical inversion. The pattern of 
hexagons and triangles below crowds towards two points on the sphere, 
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the visible south pole and the north pole. The figure below is the result of 
inverting the spherical tessellation in the sphere. 

REFERENCE: R. DIXON, Mathographics, Basil Blackwell, Oxford, 1987. 

Islamic tessellations Islamic artists are well known for their skill and 
sophistication in using tessellations of all kinds. For example, all seventeen 
possible wallpaper patterns have been found in the Alhambra Palace alone. 
Many of their patterns involve interlacing. 
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All such complex patterns can be 'seen' in many different ways. The 
following pattern can be seen as a pattern of diamonds, each divided into 

two quadrilaterals and two pentagons, as a pattern of regular hexagons 
with spokes and truncated equilateral triangles, as a pattern of large 
hexagons dissected into four small hexagons and seven truncated equilat­
eral triangles ... and so on. 

isoperimetric problem The isoperimetric {'equal-perimeter'} theorem 
states that, of all the plane figures with the same perimeter, the circle has 
the largest area. 
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The theorem has a long history. Zenodorus, some time after Archimedes, 
proved that the area of the circle is larger than that of any polygon having 
the same perimeter. Pappus also discussed the economy of the bees in 
constructing their honeycombs, in a famous passage: 

Though God has given to men ... th~ best and most perfect under­
standing of wisdom and mathematics, He has allotted a partial share 
to some of the reasoning creatures as well. To men, as being endowed 
with reason, He granted that they should do everything in the light 
of reason and demonstration, but to the other unreasoning creatures 
He gave only this gift, that each of them should in accordance with a 
certain natural forethought, obtain so much as is needful for suppor­
ting life ... That they have contrived [their honeycombs] in accordance 
with a certain geometrical forethought we may thus infer. They would 
necessarily think that the figures must all be adjacent one to another 
and have their sides common ... There being, then, three figures 
capable by themselves of filling up the space around the same point, 
the triangle, the square and hexagon, the bees in their wisdom chose 
for their work that which has the most angles, perceiving that it would 
hold more honey than either of the two others ... for the same expen­
diture of material in constructing each. But we, claiming a greater 
share in wisdom than the bees, will investigate a somewhat wider 
problem, namely that, of all equilateral and equiangular plane figures 
having an equal perimeter, that which has the greater number of 
angles is always greater, and the greatest of them all is the circle having 
its perimeter equal to them. (Mathematical Collection, Book V) 

Steiner finally proved the isoperimetric theorem in several ways in 1841. 
A related problem is told in the Roman poet Virgil's Aeneid: Queen Dido, 
fleeing her murderous brother, landed on the shores of north Africa, and 
offered to buy land for herself and her followers from King Jarbas. She 
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was offered as much land as she could enclose with the hide of an ox. 
According to Virgil, she accepted, cut the ox-hide into a very long thin 
strip, and enclosed the maximum possible area by using the strip to mark 
the boundary of a semicircular area against the straight seashore. 
REFERENCE: IVOR THOMAS (trans), Greek Mathematical Works, Vol. 
2, Heinemann, London, 1980. 
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Japanese theorem Johnson records this Japanese theorem, typical of 
its period, exhibited in a temple to the glory of the gods and the discoverer, 
dated about 1800. 

Draw a convex polygon in a circle, and divide it into triangles. Inscribe a 
circle in each triangle. Then the sum of the radii of all the circles is 
independent of the vertex from which the triangulation starts. Any trian­
gulation will do: the sum in the second figure is the same as the sum in the 
first. 
REFERENCE: R. A. JOHNSON, Advanced Euclidean Geometry, Dover, 
New York, 1960. 

johnson's theorem This extremely simple theorem was apparently first 
discovered by Roger Johnson, as recently as 1916. This suggests a wealth 
of geometrical properties still lie hidden, waiting to be discovered, two 
thousand years after Thales found that 'the angle in a semicircle is a right 
angle'. 
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If three identical circles pass through a common point, P, then their other 
three intersections lie on another circle, of the same size. 

There is a proof as simple as the theorem. Draw the radii, shown in the 
figure below. These form the skeleton of a cube, because the circles have 

equal radius. Add the missing sides of the cube, and the hidden vertex is 
the centre of the fourth circle. 

Julia set Choose any complex number, z = p + iq, represented by a point 
(p, q) in the complex plane, and a complex constant k. Calculate Z2 + k, 
take the answer as your new value for z, and calculate Z2 + k for this new 
value. Repeat, using this third value as the new Z ... 
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This process can be repeated ad infinitum. The sequence of values of z, 
starting with the original value, can be plotted on a graph. What will 
happen to it? There are three possibilities: it may eventually get further 
and further from the origin, and disappear towards infinity; it may tend 
towards a fixed point; or it may end up by jumping around in a region 
which is called a strange attract or. The strange attractor for a particular 
point is called its Julia set. 

If the original point lies inside the Mandelbrot set, then its Julia set will be 
a connected set forming a fractal curve, with a fractional dimension. If it 
lies outside the Mandelbrot set, it will be a set of individual points, called 
Fatou dust. 

The process z ~ Z2 + k is the simplest process that will generate this 
kind of behaviour. However, Julia sets exist for more complex processes. 
This is the Julia set for the process z ~ A cos z + k: 

REFERENCE: MICHEL MENDES-FRANCE, 'Nevertheless', Mathematical 
Intelligencer, Vol. 10, No.4, 1988. 
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Jung's theorem The greatest distance between two points in a set is 
called its diameter. Jung's theorem says that a set whose diameter is 1 unit, 
or less, can be covered by a circle of diameter 2/-{3 units. 

p 

a 

The figure on the left has a diameter PQ. If the equilateral triangle is of 
side 1 unit, then it is covered by a circle of diameter exactly 2/-{3 units, 
so that value cannot be improved upon. 



K 
Kakeya sets and Perron trees Kakeya asked in 1917 for the smallest 
convex region within which a unit line segment could be reversed, that is 
manoeuvred, so that it rotates completely. Such a region is called a Kakeya 
set. Kakeya supposed that the answer was an equilateral triangle of unit 
height. This is correct. What, however, happens if the region does not have 
to be convex? It was suggested that the answer might be a deltoid of 
suitable size, in which a unit line could be rotated continuously so that it 
always touches the deltoid and both its ends lie on the curve, but this 
conjecture turned out not to be so. The smallest such region has an area 
which can be made as small as we choose! 

The idea is to halve, and halve, and halve again the base of an equilateral 
triangle. Adjacent triangles are then slid towards each other so that they 
overlap a little. The process is repeated with these pairs of triangles, sliding 
them slightly towards each other. 
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The result is called a Perron tree. If the base of the triangle is divided 
sufficiently often, the area of the Perron tree that results can be made as 
small as we choose. Several Perron trees fitted together provide space for 
a unit segment to rotate completely. 
REFERENCE: K. J. FALCONER, The Geometry of Fractal Sets, Cambridge 
University Press, Cambridge, 1985. 

Kepler-Poinsot polyhedra Pacioli, in his De Divina Proportione, for 
which Leonardo da Vinci is believed to have drawn illustrations, shows 
an 'elevated' dodecahedron and icosahedron. Pacioli's elevations on the 
dodecahedron were shallow pentagonal pyramids, and he added regular 
tetrahedra to the faces of the icosahedron. 

Kepler's figures from Harmonice Mundi (1619), better known because 
it contains his third law of planetary motion, illustrated two new polyhe­
dra, which can be considered regular although they are not convex. Their 
faces are regular star pentagons which intersect each other. They are, on 
the left, the small stellated dodecahedron, and on the right the great 
stellated dodecahedron. 
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These were rediscovered by Poinsot in 1819, along with two other new 
non-convex regular solids, the great dodecahedron (left) and the great 
icosahedron (right). 

All these solids are three-dimensional analogues of the plane star polygons. 
The great dodecahedron and the small stella ted dodecahedron have 
bothered some mathematicians because it is not obvious how they fit 
Euler's relationship, that vertices + faces = edges + 2. Each of them has 
apparently 12 faces, 12 vertices and 30 edges. 

Klein bottle Take a cylinder and twist one end round so that it passes 
through its own wall. Join the two ends smoothly, and you have a Klein 
bottle, named after Felix Klein. 

The Klein bottle can be thought of as a rectangle in which one pair of 
opposite edges have been joined directly, without twisting (CD to CD'), 
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but the second pair of opposite edges have been joined after a half-twist 
(AB to B' A'). 

A B 

C'I--------\---+-------I C 

D'~----------_+--~----------~D 

knots The history of knots is lost in the mists of time. It is quite plausible 
that human beings used knots before they invented numbers, yet it is only 
in the last hundred years or so that mathematicians have realized that they 
are mathematically significant, and have studied them. 

This is a bowline knot, a type of knot found a few years ago by archaeo­
logists in a fishing net in Finland and dated by pollen analysts to around 
7000 Be. Splice the ends together. The result is the same as if you had 
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started with a sheet bend and spliced its ends: mathematically, the knots 
are equivalent. 

Traditional knots have hundreds of forms and uses, from the severely 
practical to the intricate and decorative. On the left below is a flat lanyard 
knot, on the right an 'ocean plait', both reminiscent of the patterns in Celtic 
strapwork. 

knots in sequence Mathematicians are not interested in whether knots 
are of practical use (which depends on ease of tying, friction, and so on), 
so they imagine knots simply as curves in space which do not come apart 
because the ends have been joined. A curve can be knotted only in three­
dimensional space. In four dimensions a curve cannot be knotted, but a 
surface can be. 
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A natural way to classify knots is according to their numbers of 
crossings. These are the prime knots, with 7 or fewer crossings. 'Prime' 
means that the knot cannot be thought of as two knots, tied one after the 
other on the string. 
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Notice that any knot can be given an extra but trivial crossing by 
pinching a small portion and turning it over (either to the right or the left). 
Such crossings are not counted, and are removed before the knot is 
classified. 

The number of knots with a certain number of crossings increases 
rapidly, as might be expected. There are 1 each with three (the lowest 
number possible) and four crossings, 2 with five, 3 with six, 7 with seven, 
21 with eight, 49 with nine, and 165 with 10 crossings, if knots which 
have left-handed and right-handed forms are not distinguished. 

Koch's snowflake curve Take an equilateral triangle, and replace the 
middle third of each side by two line segments equal in length to the 
portion removed. Repeat, always replacing the middle third of each 
straight edge in the same way. Below are shown the first four stages of this 
'snowflake curve'. Koch's curve is the limit of this curve as the number of 
stages tends to infinity. 
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The length of Koch's curve is infinite, but the area it encloses is only 
~ of the area of the original triangle. It is a fractal curve, with fractal 
dimension log 4/log 3, approximately 1·2618 (though ideas of fractals 
were not around when Koch published his curve in 1904). 

The anti-snowflake curve is formed by replacing the middle third of 
each line by the same two line segments, but pointing inwards. Its area in 
the limit is 1 that of the original triangle, its length is infinite, and it has an 
infinite set of double points on the lines joining the centre of the original 
triangle to its vertices. 

Kiirschak's tile Take a square, and draw equilateral triangles inwards 
on each of its sides. Find the mid-points of the sides of the square formed 
by the free vertices of the triangles. These points, together with the meets 
of the sides of the triangles, are the vertices of a regular dodecagon. The 
square formed by the free vertices and the inscribed dodecagon forms the 
basis of Kiirschak's tile, shown in the second figure. 
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The tile can be used to prove Kiirschdk's theorem: thatthe area of a regular 
dodecagon inscribed in a circle of unit radius is 3. (Of the other regular 
polygons, only the square has a rational area when inscribed in the unit 
circle.) The entire figure below contains 16 equilateral triangles and 32 
isosceles triangles with angles of 150 , 150 and 1500 • The 'north' quarter 
of it contains 4 and 8 of these respectively, which equals the area outside 
the dodecagon. 

The area of the regular dodecagon, 3, gives a rough approximation to n. 
So does the perimeter of the regular hexagon. I. J. Schoenberg has proved 
that if a regular n-gon gives a certain approximation to n, by perimeter, 
then a regular 2n-gon gives the same approximation by area. 
REFERENCE: G. 1. ALEXANDERSON and K. SEYDEL, 'Kiirschak's tile', 
Mathematical Gazette, No. 421, 1978. 
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Lebesgue's minimal problem What is the smallest shape that can 
cover any set of points whose diameter is not greater than 1? 

A regular hexagon with side 1/...J3 will do; however, J. Pal proved in 
1920 that it is possible to reduce the hexagon slightly, by cutting off the 
two shaded triangles whose bases touch the inscribed circle. The hexagon 
with these two triangles removed is called Pal's universal cover: 

Later Roland Sprague showed that a further small piece could be removed. 
With centre A draw an arc to touch the opposite edge, meeting the similar 
arc centre B on the vertical axis of symmetry of the hexagon. 

REFERENCE: C. STANLEY OGILVY, Tomorrow's Math, 2nd edn, Oxford 
University Press, New York, 1972. 
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lemniscate of Bernoulli Named from the Latin lemniscus, meaning 
'ribbon', by Jakob Bernoulli, in 1694. 

To construct the lemniscate as an envelope, start with a rectangular 
hyperbola, and draw circles whose centres lie on the hyperbola and which 
go through the centre of the hyperbola. Their envelope is the lemniscate. 

The lemniscate is the inverse of the hyperbola with respect to its centre. 
Choose a constant, k, and draw a line through 0, the centre of a rec­
tangular hyperbola, cutting it at X. Find Y, on OX, such that 
OX.OY = k2• The path ofY is the lemniscate. 

The polar equation is r2 = a2cos 2e. It is a special case of Cassini's ovals. 
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The lemniscate can also be drawn with a very simple linkage. The 
distance between the two fixed points is equal to the length of the middle 
rod, and the length of the other rods is -{f times this length. The path of 
the centre of the middle rod is the lemniscate. 

lima<;on of Pascal Named after Etienne Pascal, father of Blaise Pascal, 
though Durer had already drawn the curve. 

Allow a line segment PQ of fixed length to move so that the line, 
extended if necessary, passes through a fixed point on a circle, and the 
mid-point of the segment lies on the circle. The lima<;on is therefore the 
conchoid of a circle with respect to a point on it. 

Q 

A 

The ends of the segment trace out the lima<;on. If the length of the segment 
is equal to double the diameter of the circle, the lima<;on is a cardioid. 

It is also generated by a point on a circular wheel rolling round a wheel 
of the same diameter. It has three forms (like the cycloid), depending on 
whether the point is on the circumference (generating a cardioid), or inside 
or outside the wheel. 

Its polar equation is: r = 2a cos () + k where a is the radius of the circle 
and 2 k is the length of the segment. 

To draw the lima<;on as an envelope, take a base circle and a fixed 
point (not on the circle), and draw a circle whose centre lies on the circle 
and which passes through the fixed point. The envelope of all such circles 
is the lima<;on. (If the fixed point is on the circle, it is the cardioid.) 
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line at infinity It is often helpful in geometry to think of every line as 
having a 'point at infinity' and to think of all these points forming the 'line 
at infinity'. This is thought of as a straight line, rather than a circle. 

The 'line at infinity' cannot, of course, be drawn literally. But it can be 
represented·, as in these diagrams, which show first an ellipse which does 
not meet the line at infinity, then a parabola which touches the line at 
infinity, then a hyperbola which intersects it. 

Kepler, that master of analogy, was the first mathematician to think of the 
conics as forming a continuous sequence, the ellipse becoming, in the 
extreme, a parabola, which in turn becomes a hyperbola, which is, as it 
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were, an ellipse which disappears to infinity in one direction and then 
reappears from the opposite direction. 

Kepler also introduced the term 'focus' for the special points previously 
described by Pappus, because a ray of light passing through one focus of 
an ellipse is reflected through the other focus. 

A real circle does not meet the line at infinity in any real points, but 
does intersect it in a pair of imaginary points, called the circular points at 
infinity. These points are the same for all circles. 

The imaginary tangents from the imaginary circular points at infinity 
to a conic (not a parabola, which touches the line at infinity) form a 
quadrilateral whose vertices are the four foci of the conic. Two of the foci 
are real, and two are imaginary. 

Lissajous figures or Bowditch curves First discussed by Nathaniel 
Bowditch in 1815, and later by Jules Antoine Lissajous in 1857. 

A Lissajous figure is a combination of two harmonic motions in two 
directions at right angles. If the periods are equal, the curve is an ellipse. 
If one period is twice the other, the curve is a quartic, including the 
lemniscate of Bernoulli as a special case. 

Its equations can be written in the form 

x = a sin(pt + q), y = b sin t 

Lorenz attractor The Lorenz attractor is named after Edward Lorenz, 
a meteorologist at the Massachusetts Institute of Technology, who dis-
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covered it while studying the behaviour of a layer of fluid heated from 
below, which could be a layer of air in the atmosphere. 

The path of the point representing the behaviour moves in three­
dimensional space. It starts at the origin at time zero, swings round one 
loop, maybe several times, then switches to the other loop, swings around 
a few times, crosses again, and so on, the switches being apparently 
unpredictable. 

lunes Hippocrates of Chios was described by Aristotle, anticipating one 
modern caricature of mathematicians, as an excellent geometer but a fool 
in everyday affairs. More significantly, he is supposed to have been the 
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first mathematician to arrange theorems in a logical sequence, an approach 
followed by Euclid in his Elements. 

Hippocrates proved that in the figure above, in which half a square is 
inscribed in a semicircle, with another semicircle on one side of the square, 
the shaded lune is equal in area to the shaded triangle. (By equating in area 
a region with a curved boundary and a rectilinear figure, this suggested 
the possibility of squaring the circle.) 

A 

B 

Archimedes proved in his Book of Lemmas that this figure composed of 
semicircles, which he called salinon ('salt-cellar'), has an area equal to the 
circle on AB as diameter. 



Malfatti's problem In 1803, Malfatti asked for the three largest (in 
total volume) cylindrical columns that can be cut from a prism of marble. 
Mathematicians at once assumed that the problem was solved when three 
circles were found which touched each other and the three sides of the 
triangular cross-section of the prism. This problem was duly solved by 
several mathematicians. 

Then, in 1930, it was pointed out that, even in an equilateral triangle, less 
of the marble is wasted if the columns have cross-sections which are the 
incircle and two smaller circles, though the increase in the area of the 
circles is tiny, just over 1 % for the equilateral triangle. 
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Thirty-five years later (mathematics sometimes moves very slowly) 
Howard Eves pointed out that if the triangle is long and thin, then this 
solution is clearly best: 

(XIJ 
Finally, in 1967 Michael Goldberg proved that the 'original' solution is 
never best. The maximum area is achieved by one of the alternative 
arrangements. 
REFERENCE: C. STANLEY OGILVY, Excursions in Geometry, Oxford 
University Press, New York, 1969. 

maltitudes The perpendiculars drawn to the sides of a quadrilateral 
from the mid-points of the opposite sides are called the maltitudes of the 
quadrilateral. If the quadrilateral is cyclic, then they are concurrent, in the 
point which is the reflection of the centre 0 of the circle in the centroid G 
of the four points. 

Mandelbrot set The process z ~ Z2 + k, which defines the simplest 
Julia sets, also defines the Mandelbrot set, discovered in 1980 by Benoit 
Mandelbrot, once a student of Gaston Julia. For each different complex 
constant k, the origin will either tend to infinity or to a fixed point, or will 
jump around inside a Julia set. All the values of k for which z does not 
tend to infinity form the Mandelbrot set. Similar sets exist for different 
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functions. The figure shows the Mandelbrot set (on the left) and the 
analogous set for the function Z4 + k. 

The main body of the Mandelbrot set is a cardioid. This has a large circle 
attached to it on the left and circle-like regions top and bottom. The 
cardioid and all these regions have small regions attached to them, and so 
on, as in Jonathan Swift's verse: 

So, naturalists observe, a flea 
Hath smaller fleas that on him prey; 
And these have smaller fleas to bite 'em, 
And so proceed ad infinitum. 

The boundary of the Mandelbrot set is fractal. On being blown up on the 
computer screen (as below), no matter how large the magnification, it is, 
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in a sense, similar to itself. In some positions, the whole image of the 
Mandelbrot appears again. The rate at which z goes to infinity if it is not 
part of the set can be shown on the screen as a colour or shade of grey. 
The image shows such an effect, at a magnification of 170, at a point to 
the left of the circular attached region along the axis of symmetry of the 
set. 

What would happen if, instead oftracing the path of (0,0) for different 
values of k, another point were chosen? The result would be just a 
deformed version of the Mandelbrot set. 

Mascheroni constructions Mohr and Mascheroni discovered the sur­
prising fact that any construction that can be performed with a ruler and 
compasses can also be done with compasses only. It is also possible to use 
a ruler alone, without compasses, provided one fixed circle and its centre 
have already been drawn, or just an arc of a circle (however small) and its 
centre, or two fixed intersecting circles without their centres. 

For example, to find the mid-point of AB first construct circles centred 
at A and B with radii equal to AB. Then draw a circle centred at C with 
radius A C and a circle centred at D with radius DB. With centre A and 
radius AE, draw the next circle, followed by the circle centred at E with 



MATCHSTICK CONSTRUCTIONS. 149 

radius EC. Finally, circles centred at F and G, passing through E, cross at 
the centre of AB. 
REFERENCE: H. STEINHAUS, Mathematical Snapshots, 3rd edn, Oxford 
University Press, 1969. 

matchstick constructions T. R. Dawson, more famous as a chess 
problemist, discovered that every point that can be constructed with ruler 
and compasses, and no other points, can be constructed with identical 
matchsticks, in other words, by the use of identical, movable, straight line 
segments. 

c 

o E 

A 8 

This is Dawson's 7 matchstick construction for bisecting the line AB. 
As he pointed out, it also serves to bisect the angles ACB and DCE, or 
any angle less than 120° which is not exactly equal to 60°. 

This is how to construct a square. First construct the three equilateral 
triangles ABC, BCD and BDE. Then let AF be any line within the angle 
B A C, and construct G and then H. The point F and the crossing of G H 
and ED define two sides of the required square, BKLM. 

A 

C 

~""'---+.::---t, L 

H 

REFERENCE: T. R. DAWSON, "'Match-stick" geometry', Mathematical 
Gazette, No. 254, 1939. 
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medians of a triangle concur A median joins a vertex of a triangle to 
the mid-point of the opposite side. The point where they meet divides each 
of the medians in the ratio 2 : 1. Curiously, a line from one vertex which 
bisects a median divides the opposite side in the same ratio. 

The median point is also the centre of gravity of three equal masses at the 
vertices, and also the centre of gravity of the whole triangle considered as 
a sheet of uniform thickness. 

Menelaus'theorem Menelaus of Alexandria proved this theorem in his 
work on spherical trigonometry. 

A 

B 

If ABC is any triangle, and DEF is any line cutting all three sides, then 

The ratio is negative because D EF must cut one of the sides externally. In 
this figure, D cuts BC externally, and DC is measured 'backwards' to C, 
and so is counted negative. The converse theorem is also true. 

Menelaus' theorem generalizes to any polygon. 
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Miquel point Four general lines form four triangles, whose circumci­
rcles all concur in their Miguel point, M. This is the focus of the unigue 
parabola which touches the four lines. The centres of the circumcircles 
also lie on a circle, which passes through the Miguel point. 

What happens if we start with five general lines? Taking them four at a 
time produces five Miguel points, which all lie on a circle called the Miquel 
circle. In addition, each set of four lines produces a circumcentre circle, 
and all five of these circles pass through a common point. 

Starting with six lines, each group of five generates a Miguel circle, 
and, naturally, all these Miguel circles pass through a common point, and 
so on. 

Miquel's theorem Draw a circle and mark four points on it, A, B, C 
and D. Draw circles through A and B, Band C, C and D, and D and A. 
Then the other four intersections of these new circles also lie on a circle. 
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The figure is symmetrical. Although it started with the circle ABCD, it 
could just as well have started with any of the other circles. This symmetry 
appears clearly when the points are arranged thus: 

A 
S 

B 
P 

C 
Q 

D 
R 

There are six ways of choosing two letters from the first row. Add the 
non-matching letters from the second row, and all four points will lie on 
a circle. 

Mobius strip Take a long, thin rectangle of paper, and join the narrow 
ends after giving the strip a half-twist. (You could join the longer sides, 
but this is more difficult.) The result is a Mobius strip, named after August 
Mobius, who published a description of it in 1865. 

It has one edge, and only one side, and comes in two forms: the right­
handed and left-handed, which can be turned over into each other only in 
four dimensions. 

Start at any point on the surface, and draw a line in one direction which 
does not cross the edge. Keep going, and half-way through your journey 
you will pass the point you started from, but on the other side of the paper, 
and after another circuit you will be back to your starting point. 

Because it is one-sided, a conveyor belt which is given half a twist, as 
patented by the Goodrich Tyre Company, will wear evenly on both sides. 

Cut a Mobius strip along its centre-line. The result is not two pieces, 
but one which has four half-twists, as if the ends of a long rectangle had 
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been given two full twists before being joined. The edges are now two 
separate curves, linked to each other but not individually knotted. 

A cylindrical strip of paper can be stretched between two rollers. A Mobius 
strip stretches round three. 

Monge's theorem The external tangents of three circles x, y and z, 
taken in pairs, meet in three points A, Band C which lie on a line. If the 
meets of the internal tangents are included (call them L, M and N, 
corresponding to the pairs of circles y and z, z and x, x and y), then AMN, 
BNL and eLM are also straight lines. 

L. A. Graham relates that when the engineer John Edson Sweet was 
first shown this problem, 

He paused for a moment and said, 'Yes, that is perfectly self-evident.' 
Astonished, his friend asked him to explain ... Prof. Sweet, in effect, 
replied, 'Instead of three circles in a plane, imagine three balls lying 
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on a surface plate. Instead of drawing tangents, imagine a cone 
wrapped around each pair of balls. The apexes of the three cones will 
then lie on the surface plate. On top of the balls lay another surface 
plate. It will rest on the three balls and will be necessarily tangent to 
each of the three cones, and will contain the apexes of the three cones. 
Thus the apexes of the three cones w:illlie in both of the two plates, 
which is of course a straight line.' 

This theorem was first proposed by d' Alembert, and proved by Monge 
using exactly the same method as Sweet. 

Its analogue in three dimensions says that the apexes of the cones 
defined by four spheres, taken two at a time, lie in a plane. The cones are 
drawn so that the spheres are on the same side of the apex. 
REFERENCE: 1. A. GRAHAM, Ingenious Problems and Methods, Dover, 
New York, 1959. 

Morley's triangle Frank Morley was studying cardioids in 1899 when 
he came across an extraordinary theorem, which anyone doodling with 
pencil and paper might have previously spotted. 

Take any triangle and trisect the angles. Three of the points where they 
meet form an equilateral triangle. 
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Not surprisingly, if the exterior angles of the triangle are trisected 
instead, another equilateral triangle is formed. Moreover, the intersections 
of the other external trisectors and the sides of that triangle form three 
more equilateral triangles, as in the figure below. 

The Morley triangle has the same orientation as the deltoid which is the 
envelope of all the Simson lines of the triangle. 



Napoleon's theorem According to legend, Napoleon Bonaparte is 
supposed to have discovered this theorem. He had some understanding of 
mathematics, so it is possibly true. 

Take any triangle and construct equilateral triangles on its faces. Then 
the centres of these new triangles form another equilateral triangle. 

Alternatively, the equilateral triangles can be constructed inwards: their 
centres still form another equilateral triangle. This triangle has the same 
centre as the outer triangle, and the difference in their areas is the area of 
the original triangle. 

On the other hand, drawing the centres of one equilateral triangle 
drawn inwards and two outwards makes a triangle with angles of 30°,30° 
and 120°. 

The theorem can be proved by embedding the figure in a tessellation, 
which turns out to have sixfold symmetry. 
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The outer triangles do not have to be equilateral. It is enough that they are 
similar to each other and attached to the original triangle without changing 
their orientation, except by slight rotation, as in the figure below. Then 
the generalized theorem says that corresponding points, one from each 
triangle, form another triangle of the same shape. 

Going back to the original figure, it can be seen to contain many more 
equilateral triangles: 
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Equilateral triangles constructed on the sides of a triangle are related 
to the Fermat point. 

If equilateral triangles are drawn on the sides of a general convex 
quadrilateral, alternately inwards and outwards, then their vertices form 
a parallelogram. 

nephroid So named because it resembles a kidney in shape. It is the path 
of a point on the circumference of a circle of radius a rolling round the 
outside of a fixed circle of radius 2a. Alternatively, it is the path of a point 
on the circumference of a circle of radius 3a rolling on a fixed circle of 
radius 2a, so that the fixed circle is inside the larger circle. 

To draw it as an envelope, draw a base circle, and one of its diameters. 
Draw a number of circles whose centres lie on the base circle and which 
touch the chosen diameter. These circles envelope a nephroid. 

It is also the envelope of the diameter of one circle which rolls round 
the outside of another, equal, fixed circle. 

The evolute of a nephroid is another nephroid, with the same centre, 
but half the size and rotated through 180°. 

nine-point circle In any triangle, the mid-points of the sides, the feet of 
the altitudes, and the mid-points of the lines joining the vertices to the 
orthocentre, all lie on a circle. 



NINE-THREE CONFIGURATIONS' 159 

Brianchon and Poncelet published the theorem in 1821, though an 
otherwise unknown Englishman, Benjamin Bevan, proposed a problem in 
1804 which is practically equivalent. 

The nine-point circle is half the size of the circumcircle of the triangle, and 
its centre is half-way between the circumcentre and the orthocentre. 

The nine-point circle actually contains many more than nine points: 
see Feuerbach's theorem. 

nine-three configurations There are three essentially different nine­
three (93) configurations. That is, there are three ways of arranging 9 lines 
and 9 points so that there are 3 lines through every point and 3 points on 
every line. 
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The second of these configurations can be thought of as a triangle which 
is inscribed in another triangle, which is inscribed in a third triangle, which 
is inscribed in the first triangle. The first of them is also the figure for 
Pappus'theorem. 

non-alternating knots A prime knot with fewer than eight crossings 
must be alternating. That is, if you trace the path of the string as it crosses 
itself, it goes alternately under-over-under-over. (As when classifying 
knots by their crossings, trivial cross-overs formed by pinching a piece of 
string and turning it over are not counted.) The smallest non-alternating 
knots are these three with eight crossings. 
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non-rigid polyhedra Cauchy proved in 1813 that a convex polyhedron 
made from rigid faces hinged along their edges is rigid. However, if it is 
not convex there are various alternative possibilities: it may be rigid, or 
'shaky' (infinitesimally movable), have two or more stable forms, or be 
continuously movable, like a linkage. 

Consider a pair of adjacent faces of an icosahedron. Their edges form 
a skew quadrilateral, which is also the edge of another pair of triangles 
with a common edge. 

Take a regular icosahedron and replace each of six pairs of faces with 
an edge in common (matching in orientation the faces of a cube) by a pair 
of equilateral triangles. The result is Jessen's orthogonal icosahedron. It is 
shaky: it can be infinitesimally deformed, slightly changing the angles 
along the long edges, without straining on the faces. 

Take ten equilateral triangles and make two pentagonal pyramids, 
joined face to face, except that a gap is left rather than joining the last two 
pairs. Take two of these incomplete pyramids, and join them at right 
angles, so that when one is squeezed to reduce its height and widen the 
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gap, the other becomes fatter. Calculation shows that there are three stable 
positions for this polyhedron, which was first constructed by Michael 
Goldberg. 
REFERENCE: MICHAEL GOLDBERG, 'Unstable polyhedral structures', 
Mathematics Magazine, May 1978. 



o 
octahedron If the edges of a regular octahedron are divided in the 
golden section (that is in the ratio 1 : ~(1 + -{5») so that the points of 
division for any face of the octahedron form an equilateral triangle, then 
the 12 points of division are the vertices of a regular icosahedron. 

There are two ways in which the edges can be divided internally in the 
golden ratio, and two more ways in which they can be divided externally, 
producing a total of four icosahedrons. For external division, the points 
of division of the edges of one face are next-but-one vertices of the 
icosahedron. 
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one-sided surfaces A one-sided surface may have only one edge, which 
may be knotted or unknotted. If it has two edges there are more possi­
bilities: each may be knotted or unknotted, and the edges may be linked 
or unlinked. There are no fewer than eight surfaces with these combina­
tions of possibilities. The first figure is the Mobius strip. 

Edge is a simple 
closed curve 

Both edges are 
simple closed 

curves, unlinked 

Both edges are 
knotted, unlinked 

One edge is 
simple, one 

knotted and 
unlinked 

One-sided, one-edged 

One-sided, two-edged 

Edge is knotted 

Both edges are 
simple closed 
curves, linked 

Both edges are 
knotted, linked 

One edge is 
simple, one 
knotted and 
linked 
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orthocentric points Proclus first recorded that the altitudes of a 
triangle concur, in the orthocentre (usually denoted by H) of the triangle. 
The three vertices of the original triangle and the orthocentre possess a 
beautiful symmetry, as Carnot first noted: anyone is the orthocentre of 
the triangle formed by the other three. They form a set of orthocentric 
points. 

A 

c 
The four triangles formed by four orthocentric points have the same 
nine-point circle, which their 16 inscribed and escribed circles all touch. 
The reflection of H in BC lies on the circumcircle of triangle ABC, and 
so on, and the same four triangles also have circumcircles of the same size. 

The centres of the circumcircles of the four triangles form a figure 
congruent to the original four points, being their reflection in the nine­
point centre. The centroids of the four triangles form an orthocentric set, 
similar to the original set but one-third the size. 

Dwight Paine has presented the best-known properties of the triangle 
in verse. These are his lines on the altitudes, which may tempt readers to 
look up the rest: 

Although the altitudes are three, 
Remarks my daughter Rachel, 
One point'lllie on all of them: 
The orthocentre H'll. 

REFERENCE: DWIGHT PAINE, 'Triangle rhyme', Mathematics Magazine, 
September 1983. 
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orthogonal surfaces In two dimensions, two sets, or families, of curves 
may have the property that each curve of one family intersects every 
member of the other family orthogonally. In three dimensions, up to three 
families of surfaces may have the analogous property. Any pair of surfaces, 
not from the same family, intersect each other orthogonally along a curve. 

The simplest example of three families of orthogonal surfaces is three 
sets of parallel planes, for example the three sets of planes parallel to the 
faces of a cube. 

The more complicated example shown here is a three-dimensional ana­
logue of the families of confocal conics. It shows one member from each 
of a family of ellipsoids, a family of hyperboloids of one sheet, and a family 
of hyperboloids of two sheets. One surface of each family passes through 
any point in space. Space is therefore divided into curvilinear boxes, whose 
vertex angles are all right angles, as in an ordinary rectangular box, but 
whose faces are not even flat, let alone rectangular. 



p 
packing circles rigidly Arrange identical circles to form an infinite 
hexagonal tessellation, with gaps, and remove every third circle. Then 
replace every remaining circle by three small circles, touching each other 
and the adjacent circles. The figure shows the result of replacing some of 
the original circles by triples of smaller ones. 

The resulting pattern of circles is rigid, in the sense that each circle is 
securely held by three adjacent ones. The completed pattern of small circles 
covers only (7-v3 - 12)1t, or approximately 0·393 of the plane, probably 
the lowest possible density for such a rigid packing of circles. 
REFERENCE: H. MESCHKOWSKI, Unsolved and Unsolvable Problems in 
Geometry, Oliver & Boyd, London, 1966. 

pantograph The pantograph exploits the properties of similar triangles 
in order to produce an enlarged or reduced copy of a figure. The point 0 
in the next figure is fixed; AB is parallel to CD, and OA to DE. If D traces 
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out one figure, then the point B traces out another similar figure, enlarged 
in the ratio OB : OD. 

A 

o o B 

Pappus'theorem Take any two lines and three points on each, and 
cross-join the points, as in the figure. The meets of the cross-joins lie on a 
straight line. This is a special case of Pascal's theorem, because the original 
pair of straight lines can be thought of as a special case of a conic. 

Because the theorem involves only points, straight lines, meets and joins, 
it has a dual, in which points are swopped for lines, and lines for points. 
The following figure is a special case of the dual theorem, with the three 
lines through each of the two points being two sets of three parallel lines 
which meet in two points at infinity. Joining the points shown in the figure 
gives three lines which meet in a point. 
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A B C 
~~----------r---------------~ 

Dr---------~~--~------~~F 

G H 

In this figure a rectangle is divided into four smaller rectangles. The thin 
lines meet at a point. So do the lines DB, G C and HF, which illustrates 
the fact that in the original Pappus figures the points on each line can be 
considered in different orders. 

Pappus' theorem is equivalent to the following theorem about points 
and lines in three dimensions. Take three lines in space, a, band c, which 
do not meet. It is possible to find an infinite number of other lines which 
meet all three of them. Choose three such lines, and call them p, q and r. 
Then the equivalent theorem says that if d is a fourth line meeting p, q and 
r, and s is a fourth line meeting a, band c, then sand d also meet. 

parabola The Greeks considered the parabola to be a section of a 
right-angled cone, parallel to a line through its vertex. In fact, it is the 
cross-section of any cone by a plane parallel to a straight line through the 
vertex of the cone. 
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It is also the path of a point moving so that its distance from a fixed point, 
called its focus, equals its distance from a fixed line, called the directrix: 

A ray of light passing through the focus will be reflected from a parabolic 
mirror parallel to the axis. Therefore headlamps use approximately para­
bolic mirrors with the source of light at the focus. 

If we assume that gravity acts directly vertically, rather than towards the 
centre of the Earth, and we ignore air resistance, then we may consider the 
path of a projectile to be a parabola. If shells are fired in all directions from 
one point, with the same constant initial velocity, then the envelope of 
their paths is another parabola, or, in three dimensions, a paraboloid of 
revolution. 
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The surface of a slowly rotating liquid in a circular bowl is a paraboloid 
of revolution. Any vertical cross-section of this surface will be a parabola. 
A parabola is also the shape of the main cables of a uniformly loaded 
suspension bridge, if the weight of the cables and supports is ignored. 

The parabola may be constructed as an envelope. For example, draw 
two lines and mark off equal lengths from their intersection, and number 
them in opposite directions, as in the figure. Straight lines drawn between 
points with the same number will envelope a parabola. The two original 
lines are tangents. To draw the more of the parabola, mark further points 
past the intersections of the original lines as shown in the right-hand figure. 

o 2 3 4 5 

This construction works because of this simple and elegant property of the 
parabola. Draw three tangents, as in the figure. Then S P IP A = Q 0 lOP 
= BQ/QS. 

s 
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A similar method is used to draw the tangents from a point to a 
parabola. Join the point P to the focus F and construct the circle whose 
diameter is PF. If the tangent at the vertex of the parabola cuts the circle 
at A and B, then P A and PB are the two tangents. 

A parabolic envelope is formed when a right-angled set-square is 
moved so that the hypotenuse passes through a fixed point, which will be 
the focus, and the opposite vertex lies on a fixed line, the directrix. 

Pascal configuration Six points on a conic can be chosen in order as 
the vertices of a hexagon in 60 different ways. Each choice generates a 
Pascal line, according to Pascal's theorem. These 60 lines form a complex 
configuration. The figure shows the Pascal configuration for six points 
arranged as a regular hexagon on a circle, so that the complexity is 
reduced. This results in a number of cases of degenerate lines. The three 
bold lines each consist of four degenerate Pascal lines. A further six lines 
are the line at infinity, so only 45 lines are visible. 

The next figure shows the centre of the first one magnified, to show some 
of the ways the Pascal lines meet. They pass three at a time through the 
20 Steiner points, and also three at a time through the 60 Kirkman points. 
Each Steiner point lies, together with three of the Kirkman points, on a 
Cayley line, of which there are 20. The Steiner points also lie, four at a 
time, on the 15 Plucker lines, and the 20 Cayley lines pass four at a time 
through 15 points, called the Salmon points. 

There is a symmetrical relationship here between the 60 Pascal lines 
and 60 Kirkman points, the 20 Cayley lines and 20 Steiner points, and the 
15 Plucker lines and 15 Salmon points. 
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Pascal's theorem Blaise Pascal discovered his famous theorem at the 
age of 16, in 1640, and published it as a small pamphlet entitled Essai 
pour les coniques. The theorem states that if a hexagon is inscribed in a 
conic, then the three points in which pairs of opposite sides meet will lie 
on a straight line. If the points of the hexagon are labelled in order as 
ABCDEF, then AB and DE are opposite sides intersecting in X and so on. 
The line XYZ is then the Pascal line. 

D 

B 

, For a zigzag-inscribed hexagon, the points of meeting are inside the conic 
and the figure looks much like the figure for Pappus' theorem. Indeed, 
Pappus' theorem is a special case of Pascal's theorem in which the conic 
degenerates into a pair of straight lines. If the hexagon is drawn in a more 
normal manner, then the three collinear points lie outside the conic. 
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Pascal's triangle Write down Pascal's triangle (for more details, see the 
Penguin Dictionary of Curious and Interesting Numbers) on hexagonal 
paper. Shade in the hexagons containing odd numbers. The pattern on the 
left results (as generated by a computer using a dot instead of a hexagon) . 

.... . ... . . . . .. .. .. .. ....... . ................ . . .. .. .. .. .... . ... .. .. .. .. . .. . .... . .. . ........ . ...... . . . . . .. .. .. .. .. .. .. .. .... .... .... . ... . . . . . . . . .. .. .. .. .. .. .. .. ............... . ................................ 
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Shading multiples of numbers other than 2 produces different patterns. At 
centre and right are the patterns for multiples of 7 and 8. 

Pascal's triangle as a pattern of odd and even numbers can be thought 
of as a cellular automaton. Given a row of Os and is in an infinite strip of 
cells, the next row of cells in filled by the rule that adjacent is or adjacent 
Os have a 0 beneath them, and the pairs 01 or 10 have a 1 beneath them. 
Any pattern of is and Os will do to start with. 

1 000 1 0 1 0 1 101 101 111 
100 1 1 1 1 101 101 1 000 

1 0 1 0 000 1 101 1 0 1 0 0 
1 1 1 000 1 0 1 101 1 1 0 
o 0 1 001 1 101 100 1 
o 1 101 001 1 0 1 0 1 
101 1 101 0 1 1 1 1 

1 100 1 1 1 1 000 
o 1 0 1 000 1 0 0 

1 1 1 100 1 1 0 
o 0 0 1 0 1 0 1 
0011111 
o 1 0 0 0 0 

1 100 0 
o 1 0 0 
110 
o 1 

1 
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It is easy to change the rule. In the following pattern, an odd number 
of is in three adjacent cells generates a 1 in the cell below the middle cell 
of the three; an even number of is generates a O. 

1 1 1 0 100 1 100 1 1 1 1 000 
10011 100 1 101 1 010 

1 1 0 1 0 1 1 0 0 0 0 0 0 1 
o 0 1 000 1 0 0 0 0 1 

1 1 101 1 100 1 
1 000 1 Oil 

101 100 
000 1 

o 1 

pencils of conics There is a unique conic through 5 points, or touching 
5 lines, and there is an infinite family of conics touching four lines. 

Of the eleven regions into which the four lines divide the plane, only five 
contain a conic touching all four lines. Parabolas occur only in the 
left-hand region, which also contains ellipses and portions of hyperbolas. 
The only closed quadrilateral region contains ellipses only. 

Penrose tilings Roger Penrose, a world famous specialist in relativity 
and quantum theory, is also an enthusiast for mathematical recreations. 
He and his father invented the Penrose staircase, which ascends for ever 
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and ever. Penrose discovered these two tiles, felicitously named 'darts' and 
'kites' by John Conway. 

They are constructed from a rhombus. The length <I> is the golden ratio, 
t(1 + -{f) or 1·618 .... To make a Penrose tiling, the vertices are labelled 
H for heads or T for tails. The tiles are then assembled so that no two 
vertices with the same label are ever adjacent. Alternatively, the edges can 
be nicked (or slightly distorted) in order to ensure this method of assembly, 
or curves can be drawn on each tile, as in the figure below, so that when 
the tiles are correctly assembled the curves on one tile joins up with the 
curves on adjacent tiles. 

The two shapes can be used to tile the plane in an infinite number of ways 
which are not periodic. In other words, if you make a transparency of one 
of these non-periodic tessellations, there is no way you can move the 
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transparency, without rotating it, so that all the lines once again fit the 
tessellation. 

Some Penrose tilings have rotational symmetry; most do not. They all 
require more kites than darts, roughly in the ratio <I> : 1. In an infinite tiling, 
this ratio is exact. 

If the curves are drawn on the tiles, then if a curve closes, it has pentagonal 
symmetry, and so does the region inside the curve. 

Any finite region of a pattern can be tiled in only one way, so the outline 
of a region defines the tiling within it. 

Any finite region of one tiling appears not just once, but an infinite 
number of times in every other infinite Penrose tiling. This has the remark­
able consequence that if you descend onto a Penrose tiling and start to 
explore it, you can never decide which Penrose tiling you are actually on! 
Moreover, should you decide to explore this new Penrose world in search 
of particular region with which you are already familiar, you will certainly 
find it, lying within a distance of at most twice the diameter of the region. 

pentagon tessellations The regular pentagon will not tessellate. Less 
regular pentagons may, as in the Cairo tessellation. How many different 
types of tessellation are possible with irregular pentagons? 

K. Reinhardt found five distinct types of tile in 1918. Richard Kersh­
ner, in 1967, found three more which had previously been missed, and 
believed that his list was complete. However, in 1975 Richard E. James 
III discovered the beautiful new tiling shown in the next figure. 
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In this tiling A = 90°, C + D = 270°, 2D + E = 2C + B = 360°, and 
AE = AB = Be + DE. 

Then, in 1976 Marjorie Rice, according to Martin Gardner, 'a San Diego 
housewife with no mathematical training beyond the minimum required 
in high school', found a tenth type, illustrated here, quickly followed by 
three more. 
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In 1985, Rolf Stein found this fourteenth type. It is not known whether 
the list is complete. 

pentatope or simplex This is the analogue in four dimensions of the 
tetrahedron in three dimensions and the triangle in two. 

It has 5 three-dimensional faces or cells, each in the shape of a regular 
tetrahedron, 10 plane faces, 10 edges and 5 vertices, and is its own dual. 

Its net in three-dimensional space is, as would be expected by analogy 
with the plane net of a regular tetrahedron, a regular tetrahedron with a 
regular tetrahedron stuck onto each face. 
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If it is regarded as the result of joining two loops of five plane faces 
each, then each loop of five faces forms a Mobius strip. 

Truncating a regular tetrahedron, by symmetrically slicing off each 
vertex, produces a new equilateral triangle at each vertex and changes each 
face into a hexagon. If the slices are made through the mid-points of the 
edges, the original faces also become equilateral triangles and the trun­
cated solid is a regular octahedron. 

Truncating a pentatope produces new tetrahedra at each of the original 
vertices and changes its 3-dimensional faces from tetrahedra to truncated 
tetrahedra. The figure shows two views of a pentatope truncated through 
the mid-points of its edges. It is composed of 5 tetrahedra and 5 octahedra. 

perimeter bisectors The medians of a triangle bisect its area and so do 
lines parallel to one side and dividing the other side in the ratio 
(-12 + 1) : 1. These six lines are concurrent in threes: 
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All the lines which bisect the area of a triangle, in this case an equilateral 
triangle, envelope three hyperbolic arcs: 

For lines which divide the triangle into unequal areas, the envelope is more 
complex. As the ratio changes from 1 : 1 (the top figure), it first separates 
as the bottom left figure and then, at a ratio of 5 : 4 three of the arcs concur. 
Thereafter an increasingly large central region appears, which eventually 
becomes the triangle itself. 
REFERENCES: J. A. DUNN and J. E. PETTY, 'Halving a triangle', Mathe­
matical Gazette, No. 396, 1972; DEREK BALL, 'Halving envelopes', 
Mathematical Gazette, No. 429, 1980. 

Peaucellier's cell Peaucellier was a French army officer, who was the 
first person to solve the problem of how to draw a straight line without 
the use of a ruler, by means of a linkage. 
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The peg at the vertex of the large vee is a fixed point. The general 
Peaucellier linkage just consists of the vee and the rhombus. If one vertex 
of the rhombus traces a circle (which passes through the fixed point) then 
the opposite vertex traces its inverse, which is a straight line. This is 
achieved by adding an extra rod and fixing its end at the centre of the circle 
as in the figure. 

If the same vertex of the rhombus traces out, not a circle, but some 
other curve, then the opposite vertex will still trace out its inverse. 
Peaucellier's cell can therefore be used to invert any curve. 

Peaucellier's invention, first published in 1867, was motivated by the 
common need in mechanics to transform circular motion into rectilinear 
motion. James Watt had previously found an approximate solution, 
Watt's parallel motion. A.B. Kempe, author of 'How to draw a straight 
line: A lecture on linkages' (1877) and inventor of several linkages himself, 
described how Peaucellier's cell was adapted by the chief engineer, Mr 
Prim, for use in the air engines which ventilated the new Houses of 
Parliament, and recommended a visit to his readers. 

Philo's line Given two lines forming an angle, and a fixed point X within 
the angle, the shortest line segment AB through the point X is called Philo's 
line, after Philo of Byzantium, an expert on mechanics and hydraulics who 
came across the idea while trying to duplicate the cube. If 0 Y is the 
perpendicular from 0 to AB, then AX = YB. 

O~----_..J 
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A much simpler problem is to find the line through X which encloses, with 
the two original lines, the smallest area. The answer is simply to construct 
the line which has X as its mid-point. 

o 

Pick's theorem In 1899 G. Pick discovered a simple method of finding 
the area of a polygon whose vertices lie on the points of a plane square 
grid. If N is the number of points of the lattice inside the polygon, and B 
is the number of lattice points on the boundary, including the vertices, then 

area == N + iB -1 

In this example N = 4 and B = 6, so the area is 4 + t x 6 - 1 = 6. 
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Pick's theorem is equivalent for a plane map to Euler's relationship for a 
polyhedron: vertices + faces = edges + 2. 

pivot theorem Take any three points, A', B' and C' on the sides of a 
triangle ABC. Then the circles AB'C' ,BC' A' andCA'B' have a common 
point. 

A 

B 

This leads to a porism. Take any three circles through a common point. 
Then there are an infinite number of triangle with vertices one on each of 
the circles, and whose sides pass through the other intersections of the 
circles. 

There is also a three-dimensional analogue of the pivot theorem. Take 
six points on the edges of a tetrahedron. The four spheres each passing 
through a vertex and the three added points on the edges through that 
vertex have a common point. 

plaited polyhedra A. R. Pargeter, inspired by Plaited Crystal Models 
(1888) by John Gorham, developed methods to plait many more polyhe­
dral models, including the Platonics. 'Plaiting' refers literally to the process 
used to plait long hair. 



PLATEAU'S PROBLEM • 185 
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I I I I 
Heavy lines indicate cuts. The first pattern plaits into a cube, if the outer 
surface of the cube is held upwards and the initial move is to place square 
o over square U. The final square which tucks in to secure the plait is 
slightly tapered. 

The second pattern forms an icosahedron, under the same conditions. 
There are two ends to be tucked in, each formed from a pair of triangles. 
REFERENCE: A.R. PARGETER, 'Plaited Polyhedra', Mathematical Ga­
zette, No. 344, 1959. 

Plateau's problem Lagrange proposed the following problem: To 
determine the minimal surface with a given closed boundary, and with no 
singularities on the surface within the boundary. 
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This is now called Plateau's problem, because the Belgian physicist 
].A.F. Plateau solved some cases experimentally. It is in most cases an 
extremely difficult problem in the calculus of variations; Jesse Douglas 
won the first Fields Medal, the mathematicians' Nobel Prize, in 1931, for 
proving that in general a solution does exist. However, many approximate 
solutions can be obtained in practice by the use of soap films. 

If a cubical wire framework is dipped into a soap solution, 13 surfaces will 
be formed. Each surface is almost plane, and they meet in threes at angles 
of 120°. (This is a property of all soap bubbles. It is also true that when 
four edges meet at a corner, they meet at equal angles, of approximately 
1090 28' 16", the tetrahedral angle.) 

H.A. Schwarz solved Plateau's problem for a skew quadrilateral in 
1865, and illustrated his solution with three models, made of thin wire 
and covered with a film of gelatine. 
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Platonic solids A polyhedron is regular if it has as its faces just one type 
of regular polygon, and all its vertices are congruent. There are only five: 
the cube, regular tetrahedron, regular octahedron, regular dodecahedron 
and regular icosahedron. 

The regular polyhedra are called 'Platonic' by tradition, though the last 
book of Euclid's Elements states, 'In this book, the thirteenth, are con­
structed the five figures called Platonic, which however do not belong to 
Plato. Three of these five figures, the cube, pyramid and dodecahedron, 
belong to the Pythagoreans, while the octahedron and icosahedron belong 
to Theretetus.' 

That the dodecahedron was discovered early is not surprising, since 
iron pyrites crystals often occur as almost regular dodecahedra and fine 
examples are found in southern Italy. Artificial dodecahedra have been 
found in Italy dating from before 500 Be. 
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tetrahedron cube octahedron 

dodecahedron icosahedron 

The Platonic solids all satisfy Euler's relationship, that 

vertices + faces = edges + 2 

as can be seen from the table. 

Vertices Edges 

TETRAHEDRON 4 6 

CUBE 8 12 

OCTAHEDRON 6 12 

DODECAHEDRON 20 30 

ICOSAHEDRON 12 30 

Faces 

4 

6 

8 

12 

20 

Poincare's model of hyperbolic geometry Poincare discovered that 
the inside of a fixed circle provides a model for hyperbolic geometry. In 
this model a line in hyperbolic geometry is an arc of a circle, within the 
fixed circle, whose ends are perpendicular to the fixed circle. Diameters 
of the fixed circle are included. 

Two such arcs which do not meet correspond to parallel lines. If they 
meet on the fixed circle they are a pair of limit rays. Poincare's model 
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preserves angles, so angles can be measured directly from the figure. Arcs 
meeting inside orthogonally correspond to perpendicular lines. 

Lengths are not preserved, however. As you get nearer to the boundary, 
equal lengths are represented by shorter and shorter arcs of circles, making 
the boundary, as it were, an infinite distance from the centre. 

This figure shows the hyperbolic plane dissected into an infinite number 
of congruent triangles. In other words, all these triangles, including the 
infinite number of ever smaller triangles towards the edge of the disc, are 
the same size as well as the same shape. 
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pole and polar If two tangents to a conic at A and B meet at P, then P 
is called the pole of the line AB, with respect to the conic, and AB is the 
polar of the point P. 

\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 
\ 

The idea of the pole and polar is a generalization of the idea of the point 
on the curve and the tangent at that point. Any point has a polar with 
respect to a general algebraic curve, and every line has a pole. If the point 
lies on the curve, then the pole is the tangent at that point. 

Here are three of the many properties of poles and polars. A line 
through P meets the conic at X and Y and its polar line, AB, at Q. Then 
X and Y, and P and Q are harmonic conjugates: that is, X and Y divide 
the segment PQ internally and externally in the same ratio. P and Q also 
divide the segment XY in the same ratio. 
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Two lines through the pole P meet the conic at Q and R, and at Sand T. 
Then the lines QT and SR meet on the polar, and so do the lines QS and 
RT. 

If the pole of X passes through Y, then the pole of Y passes through X. 
This provides a method of constructing the pole of a point inside the conic. 

polygonal knots Tie an ordinary knot in a strip of paper, carefully 
tighten it as you press it flat, and a regular pentagon appears: 
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Hexagons, heptagons and larger polygons can also be folded from knots, 
as can be seen by thinking about the diagonals of regular polygons: 

REFERENCE: H. M. CUNDY and A. P. ROLLETT, Mathematical Models, 
Oxford University Press, Oxford,l961. 

Poncelet's porism Given two conics, for example two circles, as in the 
next figure, then if it is possible to draw a triangle inscribed in one to touch 
the other, there are an infinite number of such triangles. 

For two circles, the condition for this to occur is that R 2 - 2Rr = d2 , 

where Rand r are the radii of the large and small circles, respectively, and 
d is the distance between their centres. This is simply the relationship 
between the radii of the circumcircle and incircle of any triangle and the 
distance between their centres. (Poncelet's porism implies that if two circles 
are the circumcircle and incircle of a triangle, there are an infinite number 
of other triangles of which they are also the circumcircle and incircle.) 
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Similarly, if a quadrilateral (or n-gon) can be inscribed in one conic 
and circumscribed about the other, then there are an infinite number of 
such quadrilaterals (or n-gons). 

Pons asinorum In an isosceles triangle the base angles are equal, and 
if the equal sides are extended, the angles under the base are also equal. 
Here is Euclid's own figure, with the lines he used in his proof added. 

A 

o E 

This is the fifth proposition in the first book of Euclid's Elements. Thales 
is supposed to have proved it first. Pappus proved it by, in effect, picking 
the triangle up, turning it over, and laying it down on itself, a method 
which was rediscovered a few years ago by a theorem-proving computer 
program. 
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The name means 'bridge of fools', probably referring to its resemblance 
to a truss bridge, and also to the fact that the weak and feeble could not 
get past this point in their mathematical studies. 

pretzel transformations Imagine that the object at the top left of the 
figure below is made out of an extremely elastic material, so that it can be 
stretched or squashed as much as we wish but may not be torn or cut. It 
might seem impossible to transform the first object into the last, without 
breaking one loop or pulling it through the other, but this is not so - as 
the sequence shows. 

Having seen how the magic works once, it may be easier to accept this 
second transformation in which one of the left-hand loops just happens to 
fall off the large loop and hang free. 
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Prince Rupert's cube How large a hole of square cross-section can be 
cut through a given cube? This problem is named after Prince Rupert, 
nephew of Charles I of England, and commander of the Royalist forces in 
the English Civil War. He was elected to the newly formed Royal Society; 
he invented an alloy, still called Prince's metal, and investigated the 
properties of rapidly cooled glass drops. He ended his years as Governor 
of Windsor Castle, where he had his own forge and laboratory. 

The problem is the same as asking for the largest cube which can be 
passed through a given cube. Curiously, the solution is actually larger than 
the original cube, though only by a very small amount. If the edge of the 
original cube is 1, then the edge of the largest penetrating cube is ~ ff, or 
approximately 1·060 660. 

· · · · ....... 
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In the figure, the hole cuts the top face of the cube along the lines EFGH, 
the bottom face along ABCD, and the other two vertical edges at X and 
Y, as indicated by the heavy lines. 

projective plane In projective geometry, a straight line contains a single 
'point at infinity', where both its ends meet. In other words, the line is 
thought of as a closed curve, which only appears to disappear in opposite 
directions on the plane drawing because the drawing is finite. Moreover, 
all lines parallel to each other share the same point at infinity. 

One consequence of this idea is that a straight line extending to infinity 
which would divide the plane of Euclidean geometry into two parts does 
not separate the projective plane, whith remains in one piece. 
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The projective plane can be represented by a region in which opposite 
boundary points are identified, for example by this square, in which the 
points A and A' are the same point, as are Band B', C and C', D and D', 
and so on. 

A 8 

0' C 

C' o 

8' 

The figure below shows that a map on the projective plane may require 
as many as six colours, if any two regions with a common boundary are 
to be of different colours. Each of the six regions is adjacent to the other 
five. 

3 6 

A model of the projective plane as a closed surface can be constructed by 
identifying both sides of the square above. However, both pairs of opposite 
edges will have to be given a half-twist as they are joined (in contrast to 
the Mobius strip for which only one pair of opposite edges is twisted). 
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First the square is stretched into a half sphere. Opposite ends of diameters 
are then joined as shown in the second figure to correspond to joining the 
points A to A' and so on from the square. It is impossible to do this in a 
space of three dimensions without the resulting surface intersecting itself. 
The result is a surface which looks much like a sphere in its lower half, 
with a 'cross-cap' on top: 

This is a one-sided surface, on which Euler's relationship becomes 

vertices + faces = edges + 1 

This can be checked against the map above. There are 6 regions, or faces, 
10 vertices and 15 edges, which fits the formula. 

There is an algebraic surface with the same form. Its equation is 

(px2 + qy2)(X2 + y2 + Z2) = 2z(x2 + y2) 

where p and q are suitable constants. 
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proof by looking Many simple arithmetical facts can be proved 'at 
sight', by examining a suitable figure. 

The sum of the first n odd numbers is n2• Each odd number is represented 
by an L-shaped strip of unit squares. 

If Tn is the nth triangular number (the nth number in the sequence 1,3,6, 
10, 15,21,28,36, ... ) then 8Tn + 1 = (2n + 1)2. Each triangular number 
is represented by a staircase, since the nth triangular number is equal to 1 
+ 2 + 3 + 4 + ... + n. 

The next figure shows two 2 x 2 squares, three 3 x 3 squares, and so 
on, thereby neatly illustrating on the flat plane that the sum of the cubes 
of the integers is given by 

13 + 23 + 33 + 43 + 53 + ... = (1 + 2 + 3 + 4 + 5 + ... )2 
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pseudosphere The Italian geometer Eugenio Beltrami realized in 1868 
that the surface of the pseudo sphere provided a model of a part only of 
hyperbolic non-Euclidean space. (There is no surface without exceptional 
points that is a model for the whole of hyperbolic space.) 

The pseudo sphere is constructed by revolving a tractrix about its axis. A 
hyperbolic straight line corresponds to a geodesic on the pseudosphere. 
The distance between points is the distance measured along the geodesic. 

Congruent figures, whose angles and lengths are the same, can be 
superimposed by sliding them over the surface of the pseudosphere. From 
our view point, the figure will appear bent, but not otherwise deformed. 

The pseudosphere is a surface of constant negative curvature. Any 
other such surface will do as a model of hyperbolic geometry. The next 
figure shows on the, left a surface of constant negative curvature, a surface 
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which is cut off top and bottom by circles. In the middle is the pseudos­
phere, which can be continued upwards to infinity, and on the right a 
surface cut off below by a circular edge and with a vertex at the top. 

There is a simple but remarkable relationship between the trigonometry 
of the surfaces of constant negative curvature and those of the sphere, 
which has constant positive curvature. In the formulae of spherical trig­
onometry, leave the angles unchanged, and multiply the lengths ofthe sides 
by i, the square root of minus one. 

Ptolemy's theorem If ABCD is a cyclic quadrilateral, then 

AB.CD + BC.DA = AC.BD 

A special case (which is useful for finding Fermat points and Steiner 
trees) occurs when three of the vertices form an equilateral triangle, EFG. 
Then, ifP is any point on the arc EF, PG = PE + PF. 
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pursuit curves Imagine four dogs chasing each others' tails, starting 
from the corners of a square. The path of each dog will be an equiangular 
spiral. This would still be true if the appropriate number of dogs started 
one from each corner of any regular polygon. 

Drawing the sides of each polygon produces figures which were very 
popular in the more mathematical 'op-art' paintings of the 1960s because 
they have a strong illusion of depth (as the next figure shows). 
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Consider a target point T which moves at constant speed along a straight 
line, and a moving point P which at all times moves directly towards T. If 
P starts anywhere on the outermost ellipse, and T starts from a focus of 
the outer ellipse, then P always captures T at the same point, the centre of 
the ellipse. 

The concentric ellipses, whose shape depends on the relative velocities of 
T and P, are isochrones, and the curves of pursuit are their isoclinal. 
trajectories. 

Pythagoras' theorem 

In a right-angled triangle, the square on the hypotenuse is equal to 
the sum of the squares on the other two sides. 

The most celebrated of all geometrical theorems, and the only one to 
feature in a popular joke, whose punch line concludes that 'the squaw on 



PYTHAGORAS' THEOREM • 20~ 

the hippopotamus is equal to the sum of the squaws on the other two 
hides'. 

It is Proposition 47 of Book I of Euclid's Elements, but Euclid's proof 
is by no means the simplest or the easiest to follow. The theorem was once 
called the Theorem of the Bride and this figure is sometimes called the 
Bride's Chair: 

G 

F 
K 

o L E 

Euclid proves that triangles ABD and FBC are identical, and so are the 
pair KCB and ACE. Jumping ahead, he proves that the rectangle with 
diagonal B L is equal to the square BA G F, and similarly the rectangle with 
diagonal CL equals the square CAHK . 

. Euclid's figure has other features, which he doesn't need to use. For 
example, AE and BK are perpendicular, as are CF and AD, and - as 
Heron proved - AL, CF and BK concur. 

Pythagoras' theorem appears in China at an early date. The figure on 
the next page is from the Chou Pei Suan Ching (The Arithmetic Classic of 
the Gnomon and the Circular Paths of Heaven), which is dated about 
500-200 Be. 

Far more proofs have been offered of Pythagoras' theorem than of any 
other proposition in mathematics. In 1940 Elisha Scott Loomis published 
his The Pythagorean Proposition, a labour of love which contained 367 
proofs, including a proof by James Garfield, twentieth President of the 
United States, and many proofs sent in by correspondents, including 
several by teenagers. They were classified under four main headings and 
more than thirty sub-headings, but his compendium is not complete. 
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This proof is one of the simplest. In the figure below ABX + ACX = 
ABC, these three triangles being similar, and constructed respectively on 
AB, AC and BC as bases. But the areas of these triangles are in constant 
proportion to the areas of squares on the same bases, so the theorem 
follows. 

A 

B x c 

The two square tessellation (on page 260) provides another proof, by 
dissection. In fact, it provides an infinite number of dissections (and 
therefore an infinite number of proofs!) because the angled square can be 
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placed anywhere provided it is in this orientation. The first figure shows 
Perigal's dissection of 1873. 

The second shows Henry Dudeney's construction of 1917. 

Paulus Gerdes recently suggested a very ingenious way in which the 
theorem might have been spotted from the same decorative motif: 
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This beautiful proof is due to Leonardo da Vinci. Add a copy of the 
original triangle at the bottom. The figure now consists of four identical 
quadrilaterals. To prove that they are equal in area, imagine BA being 
rotated clockwise about B until BA lies along BX and the quadrilateral 
BAUY has become the quadrilateral BXVC. 

y 

u 

X \--+--......,1 

v 
Pythagoras' theorem can be generalized in many ways. Pappus considered 
a scalene triangle and a line XA YZ such that XA = YZ. He constructed 
the three parallelograms in the figure (their angles can vary but their 
heights and bases are fixed), and concluded that the larger is the sum of 
the two smaller. 

x 

z 
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Another generalization is named after De Gua de Malves, who de­
scribed it in 1783, although it was known to Descartes. Make a tetra­
hedron by cutting the corner off a rectangular box, so that the angles at 
one corner are all right angles. Then the square of the area of face ABC 
is equal to the sum of the squares of the other three faces. 

A 

~--------------~~c 

B 



Q 
quadrilateral tessellation Any quadrilateral which does not cross itself 
will tessellate, even if it is re-entrant. The tessellation is related in a simple 
manner to the tessellation of parallelograms constructed by joining half 
the pairs of opposite vertices of the quadrilaterals. 



R 
rectangular hyperbola A hyperbola whose asymptotes are perpendicu­
lar is called rectangular. 

If three vertices of a triangle lie on a rectangular hyperbola, then the 
orthocentre of the triangle also lies on the same curve. To put this another 
way, if four points are orthocentric, then there is a family of rectangular 
hyperbolas through the four points. The locus of the centres of these 
rectangular hyperbolas is the nine-point circle of the triangle. 

If four points are not orthocentric, then there is a unique rectangular 
hyperbola through them, and its centre is the point where all four 
nine-point circles of the triangles formed by taking three points at a time 
meet. If the centre of a rectangular hyperbola is taken as the centre of 
inversion, then the inverse curve is a lemniscate. 

regular four-dimensional polytopes These are the analogues in four 
dimensions of the regular polyhedra in three dimensions. There are sixteen 
in all, six convex and ten stellated. 
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The table gives the numbers of vertices, edges, two-dimensional faces 
and three-dimensional cells of which they are composed. 

Vertices Edges Faces Cells 

PENTATOPE 5 10 10 5 

16-CELL 8 24 32 16 

HYPERCUBE 16 32 24 8 

24-CELL 24 96 96 24 

600-CELL 120 720 1200 600 

120-CELL 600 1200 720 120 

The pentatope and the 24-cell are each their own duals. The 16-cell is the 
dual of the hypercube, and the 600-cell and 120-cell are duals of each 
other. 

For all the regular polytopes an analogue of Euler's relationship holds: 

vertices + faces = edges + cells 

In five or more dimensions there are just three regular convex polytopes. 

regular heptagon It is not possible to construct a regular seven-sided 
polygon using ruler and compasses only. However, it is possible to 
construct an angle of 1t /7 by using 7 toothpicks, after which the regular 
heptagon is easily constructed. The toothpicks must be arranged so that 
A, X, Y and B lie in a straight line, and similarly on the right-hand side. 
The angle at A will be 1t /7. 

A 

B ____ ooiiaIo 

REFERENCE: C. JOHNSON, 'A construction for a regular heptagon', 
Mathematical Gazette, No. 407, 1975. 
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regular hexagons and stars The regular polygons which tessellate 
individually can be transformed into tessellations of polygons and stars by 
moving them slightly apart, and then dividing the space between the tiles; 

This can also be interpreted as a hinged tessellation. Each side of a star 
which is not a side of a hexagon is a strap, hinged at both ends, which 
holds two hexagons together. As the hexagons separate further, the star 
becomes fatter, then momentarily appears as a large equilateral triangle, 
and finally as a hexagon, identical to the original hexagons. 

regular pentagon Euclid showed how to construct a regular pentagon, 
without which knowledge it would not be possible to construct a regular 
dodecahedron, as described in the last book of his Elements. 

Many approximate constructions have been described, by Leonardo 
da Vinci and Durer among many others, for the use of architects or 
designers. This one, drawn in the figure on the next page, is simple and 
perfect. 

Draw a circle, and two perpendicular diameters, and divide one radius 
in half at X. Mark off XY equal to XA, and, with radius A Y, centre A, 
draw an arc cutting the circle at Band E. Then A, Band E are three vertices 
of a regular pentagon. 
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A 

E 

regular seventeen-gon Gauss proved, at the age of eighteen (and 
published in his Disquisitiones Arithmeticce, 1801) that a regular n-gon 
can be constructed with ruler and compasses if n is a prime Fermat number, 
or the product of different prime Fermat numbers. 

The nth Fermat number is 22" + 1, where n is zero or a positive integer. 
Since the third Fermat number is 17, it is theoretically possible to construct 
a regular 17-gon by ruler and compasses only. The simplest instructions 
are due to H.W. Richmond; they are interpreted by Rouse-Ball as follows: 

Find I on OB so that 01 = !OB. Join IPo and find E and F on OPo so that 
LOIE =± LOIPo, and LFIE =! n. Let the circle onFPo as diameter cut 
OB in K, and let the circle with centre E and radius EK cut 
OPo in N3 (between 0 and Po) and N s. 
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Letlines N 3P 3 and NsP 5' parallel to OB, cut the original circle in P3 

and Ps. Then Po, P3 and Ps are the Oth, 3rd and 5th vertices of a regular 
17 -gon, from which the remaining vertices are easily constructed. 
REFERENCE: W. W. ROUSE-BALL and H. S. M. COXETER, Mathematical 
Recreations and Essays, 12th edn, University of Toronto Press, Toronto, 
1974. 

regular tessellations Kepler was the first to consider the regular tessel­
lations, recognizing them as analogues of the regular polyhedra. There are 
three regular tessellations using squares, regular hexagons and equilateral 
triangles. 

reptiles Which shapes can be dissected into identical copies of them­
selves? An isosceles right-angled triangle and any parallelogram with sides 
in the ratio 1 : -{f can each be dissected into two copies of themselves. 

These trapeziums each dissect into 4 copies of themselves, as does the 
sphinx (overpage), the only known pentagon with this property. 

These L-shapes also dissect into 4 copies: 

-
I 
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These two shapes can also be composed of smaller copies: 

Any reptile dissection can be repeated to produce a tessellation of smaller 
and smaller tiles. Alternatively, the process can be reversed, and the 
original tiles assembled repeatedly to form a tessellation of the plane. 

REFERENCE: C. DUDLEY LANGFORD, 'Uses of a geometric puzzle', 
Mathematical Gazette, No. 260, 1940. 

Reye's configuration Take the 8 vertices of a cube, and add the centre 
of the cube and the 3 'points at infinity' where the sets of parallel edges of 
the cube meet, as indicated by the arrows in the figure. This makes a tota:! 
of 12 points. 

To count 12 planes, add the 6 faces of the cube to the 6 planes passing 
through a pair of opposite edges. This is Reye's configuration, in which 
there are 12 planes and 12 points, with 6 points on every plane and 6 
planes through every point. 
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Starting with an ordinary cube is merely a convenient way of thinking 
about this configuration. Here is an alternative picture of Reye's configur­
ation, without any 'points at infinity': 

It can also be seen as a configuration of lines and points: 16 lines, the 12 
edges and 4 diagonals of the cube, and the same 12 points as before. There 
are then 4 lines through every point and 3 points on every line. 

rhombic dodecahedron Take a three-dimensional cross formed by 
placing six cubes on the faces of a seventh. Join the centres of the outer 
cubes to the vertices of the central cube. The result is a rhombic dodecahe­
dron. Its faces are all rhombuses whose shorter diagonals are the edges of 
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the original cube, arid whose longer diagonals are the edges of a regular 
octahedron. It occurs in nature in crystals of garnet, among others. 

From the original method of construction, it follows that rhombic dode­
cahedra are space-filling. If a hinged model is made of six of the square 
pyramids joining the centre of a cube to one face, the model can be folded 
one way to make a complete cube, and the other way to make a rhombic 
dodecahedron, with the cubical space inscribed within it. 

Faces meet either three or four to a vertex. Removing three faces that 
meet at a vertex and extending the six surrounding faces to form the faces 
of a hexagonal prism gives the form of cell found in a bees' honeycomb. 

If the faces of the rhombic dodecahedron are extended untilthey meet 
each other, three stellations are formed, depending on how far the faces 
are extended. The first and the third stellations are shown in the figure. 
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The vertices of the first stellation are the vertices of a cuboctahedron. 
The first stellation is also the result of interpenetrating three non-regular 
octahedra, each formed by compressing a regular octahedron along one 
of its major axes. 

Careful examination of the third stellation will show that the rhombic 
dodecahedron is also the solid which is common to three mutually 
intersecting square prisms which intersect so that each pair shares a 
common diagonal plane. The vertices of the third stellation are also the 
vertices of a truncated octahedron. 

rings of polyhedra The opposite edges of a regular tetrahedron are 
perpendicular to one another. Consequently, if made into hinges they 
function like a universal coupling. Provided there are enough tetrahedra 
to allow sufficient space inside, a ring of them can be formed which will 
freely rotate. For regular tetrahedra, at least 8 units are required. 

If the tetrahedra are 'longer and thinner', as few as six will rotate. A crude 
model can be made using pipe cleaners and straws. Take twelve straws 
9 cm long and thread a pipe cleaner through each, bending the protruding 
ends of the pipe cleaners at right-angles to the straw and to each other. 
(This can be done in a right-handed or left-handed way; do six of each.) 
Take six more straws, each 6·5 cm long, to act as joints. 
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The figure shows how the straws are joined. (The short straws are not 
parallel to the plane of the figure.) Two long straws and two short straws 
make four of the six edges of a tetrahedron. 

A different kind of join with extra flexibility can be achieved by using the 
'wallet hinge' which appears in the well-known wallet trick, in which a 
currency note appears alternately above and below the straps of a wallet. 

The strip from A to B is attached to the back of the left-hand card at A, 
and to the back of the right-hand card at B. The other strips are similarly 
glued. 
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A ring of only six cubes assembled by means of such hinges can be 
rotated continuously. 

- -
o - "--

REFERENCE: DAVID WELLS, 'Puzzle page', Games and Puzzles, Septem­
ber1975. 

rollers An object rolled on a circular cylinder moves smoothly without 
bumping because the cylinder has a constant diameter. However, a shape 
can have constant diameter without being a circle. 

This is the Reuleaux triangle, an equilateral triangle with three arcs 
added, centred on the vertices. The constant diameter of this figure equals 
the side of the triangle. 
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Starting from the same triangle, by drawing six arcs another roller is 
produced whose diameter is equal to the sum of the two radii used: 

The shape on which this type of roller is based does not have to be a 
triangle, let alone an equilateral one: it is possible to start with any number 
of lines crossing. Given the four lines in the figure, place the compass point 
on A and draw the arc P Q. Then move the compass point to D and draw 
the arc QR. Then move forward to B and draw the next arc, and continue 
round until you return to A. The complete curve has constant diameter. 

p 

All curves of constant diameter d have the same perimeter as a circle of 
the same diameter, 1t d. 
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rotors An object with rotational symmetry, such as a regular hexagon, 
can easily rotate inside a circle, always touching the sides. However, it is 
not necessary for either the rotor or the outer curve to be symmetrical. 

In the figure, the equilateral triangle has rotational symmetry of order 
three. The rotor has bilateral symmetry, each side being the arc of a circle 
whose centre is a vertex of the triangle and which touches the opposite 
side of the triangle. (The length of the rotor is equal to the height of the 
triangle.) 
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The cylinder does not have to be a circle. An equilateral triangle can 
rotate in this cylinder: 

REFERENCE: H. STEINHAUS, Mathematical Snapshots, 3rd edn, Oxford 
University Press, Oxford, 1969. 



s 
Scherk's surface This is a minimal surface with, unusually, a very 
simple equation: eZ cos y = cos x. It will span four vertical parallel lines 
through the vertices of a horizontal square. In the figure the surface has 
also been cut off at the top and bottom by horizontal planes. 
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SchHifli's double six Like Reye's configuration, Schlafli's double six 
can be most easily pictured in relation to a cube. In the next figure (showing 
two views of the double six) there are 30 points, with 2 lines through each 
point, and 12 lines, with 5 points on each line. There are 2 lines lying in 
each of the 6 faces of the cube, and all the lines could be coloured, say red 
and green, so that each red line only intersects green lines, and vice versa. 

The existence of Schlafli's configuration may be expressed as the famous 
'theorem of the double six' . Take a line, call it 1, and five skew lines cutting 
it, labelled 2', 3', 4', 5', 6'. Call the unique other line cutting 2', 3', 4', 5' 
line 6. Define 2,3,4,5 similarly. Then the theorem states that there is a 
unique line, l' which cuts the lines 2,3,4,5 and 6. The configuration that 
all these lines form is Schlafli's double six. 

Schwarz's periodic minimal surface Schwarz discovered two prin­
ciples of minimal surfaces which allowed him to build larger surfaces from 
smaller units: 

If part of the boundary of a minimal surface is a straight line, then the 
reflection across the line, when added to the original surface, makes 
another minimal surface. 

If a minimal surface meets a plane at right angles, then the mirror 
image in the plane, when added to the original surface, also makes a 
minimal surface. 
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The boundary of Schwarz's periodic minimal surface consists of straight 
lines on the faces of a cube. By filling space with these cubes in the usual 
manner, an infinite repeating minimal surface is obtained. 

Schwarz's polyhedron It is intuitively plausible that you can measure 
the area of a smooth curved surface by approximating it with many small 
plane triangles, and finding the limit of the area as the triangles increase 
in number and decrease in size. 

H. A. Schwarz produced this example which shows how wrong intuition 
can be. The basic surface is a cylinder. Divide it parallel to the cylinder's 
axis by 2 n equally spaced vertical lines, and divide it at right angles to the 
axis by 2n3 equally spaced circles. Join the vertices, as in the figure, to form 
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an accordion-pleated surface, and then let n tend to infinity. Instead of 
approximating more and more closely to the surface of the cylinder, the 
triangles turn against the surface, and the total surface area tends to 
infinity. 
REFERENCE: C. STANLEY OGILVY, Tomorrow's Math, 2nd edn, Oxford 
University Press, New York, 1972. 

semiregular tessellations There are 8 semiregular or Archimedean 
tessellations, all of whose tiles are regular polygons, with two or more 
different tiles about each vertex, and the tiling pattern around each vertex 
being the same. The tessellation of regular hexagons and equilateral 
triangles has two forms which are mirror images of one another. 
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An infinite number of tessellations of regular polygons are possible if the 
tiling around each vertex does not have to be the same. An easy method 
of construction is to take one of the semiregular tessellations, move the 
tiles apart, and fill the gaps created with more regular polygons, just as 
two (at least) of the semiregular tessellations can be constructed in this 
manner from the regular tessellations. 

seven circles theorem Draw a circle and arrange six circles around it. 
They can be any size, but they must touch each other in sequence and all 
touch the original circle. The lines joining opposite points of contact 
concur. 

There are many variants of the basic figure. In the illustration on the 
next page the original circle is at the top: five of the added circles are 
mutually tangent externally, but the sixth circle encloses the original circle 
and all the other five added circles. 
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Another variant: let the radii of three of the added circles increase without 
limit, so that these circles become straight lines which are the sides of a 
triangle. The theorem is still true. 

REFERENCE: C.J.A.EVELYN,G.B.MONEY-COUTTS, andJ.A. TYRRELL, 
The Seven Circles Theorem and Other New Theorems, Stacey Interna­
tional, London, 1974. 

seven colour torus A plane map can be coloured with at most four 
colours, so that no region is next to another region of the same colour. A 
map on a torus may require up to seven colours. In this map each of the 
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regions has a common boundary with each of the six other regions, so 
seven colours are necessary to colour it. 

Sierpinski's square snowflake This is Sierpinski's solution to the 
problem of drawing a curve which will pass through every point of a 
square. The figures show the first four approximations to the curve. The 
first two show a background of squares which are used to draw the path 
of the curve. 

At each stage, each square is split into four quarters which are filled as in 
stage 1, and then joined as in stage 2 to the squares they were previously 
attached to. The limit of this process is a curve which passes through every 
point of the square. 
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Simson line Take any triangle and a point P on its circumcircle. Draw 
perpendiculars from P to the sides of the triangle. The feet of these 
perpendiculars lie on a straight line, called the Simson line of that point, 
after Robert Simson, famous for his edition of Euclid's Elements. 

Join any point on the circumcircle to the orthocentre. The mid-point of 
this line lies on the nine-point circle and the Simson line of the point. 

The Simson lines of two diametrically opposite points on the circum­
circle are perpendicular, and meet on the nine-point circle. 

Take a triangle of points on the circumcircle. Their Simson lines form 
another, similar, triangle. 
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The Simson lines for all the points on the circumcircle envelope a 
deltoid. It is rather remarkable that the shape of the envelope is inde­
pendent of the shape of the triangle. Each side of the triangle is tangent to 
the deltoid at a point whose distance from the mid-point of the side equals 
the chord of the nine-point circle cutoff by that side. The area of the deltoid 
is half the area of the circumcircle of the triangle. The inscribed circle of 
the deltoid is the nine-point circle of the triangle. 

Draw the Morley triangle of the starting triangle. It has the same 
orientation as the deltoid. 

six circles theorem Starting with a triangle, draw a circle to touch two 
sides, and then add another circle to touch a different pair of sides and the 
first circle. Continue moving round the triangle in the same way, adding 
more circles. The sixth circle completes the chain by touching the original 
circle. 

REFERENCE: C. J. A. EVELYN, G. B. MONEY-COUTTS and]. A. TYRRELL, 

The Seven Circles Theorem and Other New Theorems, Stacey Interna­
tional, London, 1974. 

Soddy's hexlet Sir Frederick Soddy, the chemist who discovered the 
laws that determine the 'chains', or series, by which radioactive elements 
decay into others, also discovered a remarkable chain, or necklace, of 
spheres. 
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Imagine a necklace of spheres, each sphere touching two central 
spheres and one which encloses the necklace. 

Can such a necklace of spheres always be closed, so that the last sphere 
touches the first, like a Steiner chain of circles? Soddy showed that answer 
is yes, wherever the first sphere is placed, and that the necklace always 
contains six spheres. 

Moreover, the centres of the six spheres in the necklace, and their six 
successive points of contact, all lie in a plane, and there· are two planes 
which touch each of the six spheres, one on either side of the necklace. 

The analogy with Steiner chains of circles is indeed very close. Soddy's 
figure can be obtained by inverting six identical spheres arranged around 
a seventh equal sphere, all sandwiched between two parallel planes. 

space-filling polyhedra Cubes can obviously fill space. Of the other 
regular solids, only a combination of regular octahedra and tetrahedra fill 
space, six octahedra and eight tetrahedra filling the space about a point in 
a manner that can be extended indefinitely. To see this, take four cubes 
forming a square. Inscribe a regular tetrahedron in each one, by joining 
alternate vertices, to form this ring of four tetrahedra with a bottom vertex 
in common. 
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The space in the middle forms one half of a regular octahedron; 
perform the same operation with eight cubes stacked to make one large 
cube, and the interior space forms a complete octahedron. Repeat the 
operation over an entire space-filling of cubes, to get the space-filling of 
tetrahedra and octahedra. 

If spheres are close-packed in layers, with every alternate layer identical, 
and the spheres are then compressed, the result is a space-packing of 
rhombic dodecahedra. 

The truncated octahedron also fills space. (The volume of the truncated 
octahedron is half that of the cube formed by extending the truncated 
octahedron's square faces until they meet one another.) The next figure 
shows part of a row of truncated octahedra, fitted square face to square 
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face. By adding further rows in the same horizontal plane, and then filling 
up the planes above and below, a network of truncated octahedra is 
created whose holes are identical truncated octahedra. 

Less obvious as a space-filler is the tetrahedron with bevelled edges. In 
1914 Foppl discovered a space-filling composed of tetrahedra and trun­
cated tetrahedra. The centre of each tetrahedron is joined to its vertices, 
dividing it into four identical shallow triangular pyramids which are then 
attached to the adjacent truncated tetrahedron. 

These are apparently the only space-filling solids having at least the 
symmetry of the regular tetrahedron. If no symmetry is required, then a 
convex space-filling solid can have a large number of faces, certainly as 
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many as 38. P. Engel discovered such solids in 1980. The figure below has 
18 faces and an axis of threefold rotational symmetry. 

There are many other possibilities of filling space with polyhedra of two 
or more different types. Truncated cubes and octahedra fill space, as do 
the truncated tetrahedra and tetrahedra already mentioned. 

This is a filling by truncated octahedra, truncated cub octahedra and 
cubes, in the ratio 1 : 1 : 3. 



236 • SPHERE IN A CYLINDER 

By omitting certain polyhedra from a filling a three-dimensional labyrinth 
may be created. Here is the space-filling of truncated cuboctahedra, 
truncated octahedra and cubes, with the cubes omitted: 

REFERENCE: P. PEARCE, Structure in Nature as a Strategy for Design, 
MIT Press, Cambridge, MA, 1978. 

sphere in a cylinder Archimedes found the volume of a sphere to be 1 
of the volume of a cylinder of the same diameter and height, and the surface 
area to be equal to that of the curved surface of the same cylinder. 
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More generally, if the sphere and its containing cylinder are sliced by 
two planes perpendicular to the axis of the cylinder, the zones on the 
sphere and cylinder thus cut off have the same area. 

Archimedes requested that this figure be engraved on his tombstone. 
Many years later, Cicero searched for Archimedes' tomb and found it, 
with the inscription and figure intact. 

sphere packing Place a layer of identical spheres on a flat surface, and 
then place another layer on top, so that there is a new sphere in every 
alternate dimple in the first layer. Continue to add similar layers. The result 
is the densest known packing of identical spheres: the spheres occupy 
rc/3...J2, approximately 0·7403 of space. 

When laying the third layer, we have a choice. The spheres can be placed 
in one set of dimples so that they are directly over the spheres in the first 
layer, or so that they are above the dimples in the first layer which the 
second layer does not occupy. 
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In each case a sphere in the second layer touches twelve other spheres. 
The first method is the most symmetrical, the centres of the twelve 
surrounding spheres forming a cuboctahedron. In the second case, the 
cuboctahedron has been sliced about an equator, and one half given a 
twist, to produce the second polyhedron. 

Since we have a choice of two ways in which to lay every new layer, 
there are an infinite number of ways filling space with spheres, all having 
the same packing density. 

spherical geometry A form of non-Euclidean geometry in which the 
curvature is constant and positive. 

Straight lines are great circles. Any two lines meet in two points, and there 
are no parallel lines at all. Distances are the lengths between points as 
measured along the arc of a great circle, and the angle between two lines 
is the angle between the corresponding great circles. As in hyperbolic 
geometry, a triangle is defined by its angles, and there are no similar 
triangles. 

The sum of the angles of a triangle is greater than two right angles, and 
the difference between the sum of the angles and n is a measure of the area 
(as in hyperbolic geometry). In the figure, if the angles of the central 
spherical triangle are n12, 2nl5 and n16, then the area of the triangle is 
R2(n12 + 2nl5 + nl6 - n) = nR2115. 

Ironically, very old results in spherical trigonometry, which go back to 
the Greeks, now become correct formulae in this non-Euclidean geometry! 
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spiral-similarity tessellation One way to generalize the idea of a 
tessellation of identical tiles is to allow the tiles to be of different sizes, 
while remaining the same shape. 

This tessellation consists of two shapes of triangle. By pairing adjacent 
triangles in any of three different ways, it can be seen as a tessellation of 
similar quadrilaterals. 

Any set of corresponding points in this tessellation lies on an equilateral 
spiral, and all these spirals have the same pole or limiting point. The 
tessellation winds an infinite number of times about this limiting point, 
and therefore overlaps itself endlessly. 

Any ordinary tessellation can be transformed into such a spiral form. 
Look, for example, at the six triangles, three shaded and three unshaded, 
which share a common vertex in this figure. They form a hexagon, and 
the entire tessellation can be seen as formed by such hexagons. 

spirolaterals Frank Olds derived simple rules for generating a multitude 
of patterns from simple instructions. Choose a starting point and a 
direction and follow these instructions: 

FORWARD 1 
TURN LEFT 
FORWARD 2 
TURN LEFT 
FORWARD 3 
TURN LEFT 

REPEAT 
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After going four times round this loop, you return to the starting point 
having traced out the figure on the left. The turns are 90°, so the figure 
can be described as (90°: 1,2,3). You get the figure on the right, if you 
produce the spirolateral described, using the same notation, as (90°: 1,2, 
3,4,5,6, 7, 8,9) which illustrates where the name comes from. 

L 

J [ 

0 

The distances moved can be 'backwards' (written as a negative num­
ber) and the turns need not be 90°. The next figures are generated from 
(72°: 2, 3, 4, 5) and (108°: 1,2,3,4). 

Spirolaterals include the nearest geometrical equivalent to the weird 
coincidences beloved of numerologists. The next figures are the same but 
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for the different turning angle. They are (90°: 1,3,2, -1, -2) and (60°: 1, 
3,2, -1, -2): 

REFERENCE: MAR TIN GARDNER, 'Fantastic patterns traced by pro­
grammed "worms" ',Scientific American, November 1973. 

squared rectangles Z. Moron was the first to dissect a rectangle into 
unequal squares, in 1925. The question was proposed to him by S. 
Ruziewicz, and appears in The Scottish Book as Problem 59. 

14 
18 

4 
10 

7 

15 
9 8 

It is a curious coincidence that the first squared rectangle to be published 
is 32 by 33 units, and therefore close to being a squared square, which is 
much harder to achieve. 
REFERENCE: R. D. MAULDIN (ed.), The Scottish Book, Birkhauser, Bos­
ton, 1981. . 
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squared squares The Russian mathematician Lusin once claimed that 
to dissect a square into unequal squares was impossible. Roland Sprague 
first published a dissection of a square into unequal squares, in 1939. It 
used 55 squares. 

In 1978 A.l.W. Duijvestijn found the unique smallest simple perfect 
squared square, composed of 21 squares. It is perfect because all the 
squares are different, and simple because no subset of them form a 
rectangle. 
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REFERENCE: R. D. MAULDIN (ed.), The Scottish Book, Birkhauser, Bos­
ton, 1981. 

staircase tilings Rectangular tiles from which a 'staircase' has been 
removed can tile the plane, by first being paired to absorb the jagged edge. 
This can be done in four different ways: 
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D 

There are then many ways to tile the plane with the double pieces. This is 
one (the same method will tile the plane with a rectangle which has had a 
corner truncated at 45°): 

stars into polygons, stars into stars Harry Lindgren and Greg Fred­
erickson have been responsible for some extraordinary and beautiful 
dissections. The next figure shows just four of their achievements (the last 
one dissects into two identical stars): 
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To the puzzlist, the most important feature of a dissection may be the 
paucity of pieces. To the mathematician, the exploitation of the natural 
geometry of each polygon is at least as important. These dissections possess 
both these virtues, plus symmetry and surprise. 
REFERENCE: H. LINDGREN, Recreational Problems in Geometric Dissec­
tions and How to Solve Them, revised and enlarged by G. Frederickson, 
Dover, New York, 1972. 

Steiner chains of circles Place one circle inside another, and start a 
chain of circles, each touching the previous circle in the chain and the two 
original circles. In general, the chain will eventually overlap itself. 

Steiner's theorem says that if the chain is closed when the last circle touches 
the first, then it will be closed however the first circle was drawn. 
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The first chain is closed. Starting with the same two circles, and placing 
a circle anywhere we choose, to touch both of them, the resulting chain 
will still close, as the second figure illustrates. The centres of all the circles 
of the chain lie on an ellipse, whether or not the chain closes. 

It is possible that the chain will not close on the first circuit, but will 
close after going round several times. The theorem still holds: if one chain 
closes after, say, three complete turns, then any chain will close after three 
complete turns. 

Given a general pair of circles to start with, there are thus either no 
solutions to the problem of fitting a closed chain of circles between them, 
or an infinite number of solutions. This is therefore a porism. 

Steiner proved this theorem in 1826. The Japanese mathematician 
Ajima Chokuyen, however, had studied the same figure and come to 
similar conclusions in 1784. 

The figure has additional properties. The tangents at the points of 
contact of successive circles in the chain, and the lines joining the points 
of contact of each circle in the chain with the outer and inner circles, all 
pass through one point. 

Steiner networks Steiner extended the problem of the Fermat point by 
considering four or more points and asking for the shortest route which 
connected all of them. 

The solution for four suitably located points can be found by construct­
ing an equilateral triangle on opposite sides of a quadrilateral. 

Joining the new vertices and other points of intersection, as in each of these 
figures, produces a network in which lines meet at 120°. (The neat point 
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of this construction is that by choosing to draw equilateral triangles, with 
angles of 60°, we guarantee that the opposite angles, when they appear, 
will be 120° because of the property that the opposite angles of a 
quadrilateral inscribed in a circle sum to 180°.) Each of these solutions is 
a local minimum - changing it slightly will make it longer. However, it 
will still be true that one of these solutions is generally shorter than any 
other, and is the absolute minimum. 

Shown below are the three possible solutions for six points at the 
vertices of a hexagon of unit side. The total lengths are 3-Y3, 2f7 and 5, 
respectively, and it is disappointing to notice that the least interesting 
solution is actually the shortest. 

Solutions for a number of points can also be found experimentally. 
Arrange two plates so that they are joined by pegs representing the initial 
points. Dip the model in and out of a soap solution, and a soap film will 
form, joining the pegs together. After a few seconds it will contract into a 
minimum surface, under surface tension, marking a minimum route 
between the pegs. 
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Steiner's Roman surface Nineteenth-century mathematicians tended 
to be unhappy if they could not define a sur{ace by an algebraic equation. 
Steiner's Roman surface is a double-sided surface with the equation 

The axes are double lines extending as far as the 'pinch-points' distance 
t from the centre at the origin. It touches four circles, lying in the four 
planes x ± y ± z = O. It has essentially the same form as the heptahedron. 

Steiner's theorem Take two skew lines, and a line segment on each. 
The line segments are fixed in length, but each can slide along its own line. 
Joining the ends of the line segments forms a tetrahedron. The volume of 
this tetrahedron is constant, and does not change if the position of either 
segment slides along each line. 
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stella octangula Imagine cutting a small octahedron from a solid block 
of wood by plane saw-cuts. The result will be nine pieces, the octahedron 
itself and eight small tetrahedra from its faces. 

If these pieces are replaced on the faces the result is the unique stellation 
of the octahedron, first discovered by Kepler. It can also be thought of as 
the solid formed by extending the octahedron's plane faces until they meet 
each other again in new edges. 

The stella octangula is also a compound of two tetrahedra, the twb 

tetrahedra that can be inscribed in a cube by selecting alternate vertices. 
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tessellation of almost-regular polygons It is impossible to draw a 
tessellation composed of a mixture of regular 4-, 5-, 6-, 7- and 8-gons. 
The figure, from an Islamic design, shows how it is almost possible. Slight 
adjustments to the angles of the regular polygons allow tessellations such 
as this in which the pentagons and heptagons are not quite true. 

tessellations of several squares Take a standard square grid, and allow 
the squares to slide apart in both directions parallel to their edges; the 
space between them can be made into squares of any size you choose. The 
result is a tessellation of two sizes of square: 
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Tessellations of squares of many different sizes are also possible. This 
one includes three different squares: 

tetrahedra dissections In two dimensions, a triangle is easily dissected 
into any other triangle of equal area, for example by dissecting each 
triangle into the same square. Indeed, any two plane polygons can be 
mutually dissected, if and only if they have the same area. Two tetrahedra 
of equal volume cannot in general be dissected into one another. In three 
dimensions, two polyhedra of equal volume cannot in general be mutually 
dissected. David Hilbert surmised that this was impossible when he 
presented his famous 'Twenty-three problems' during an address to the 
International Congress of Mathematicians in Paris in 1900. (The difficulty 
arises in a Euclidean space of any odd number of dimensions.) 
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This dissection of a tetrahedron into a triangular prism is one of several 
discovered by M. J. M. Hill and published, in 1896. The hidden back edge 
of the base of the prism is perpendicular to the right horizontal edge and 
the left vertical edge. All these edges have the same length. The first cut is 
horizontal, one-third of the way up; the second is vertical, half-way from 
the left edge to the edge created by the first cut. 

Once the prism in the second figure has been formed, it can in turn be 
dissected into a parallelepiped and then into a cube. 
REFERENCE: V. C. BOLTYANSKII, Hilbert's Third Problem, Wiley, New 
York, 1978 

tetrahedron The centre of gravity of equal weights at the vertices of a 
tetrahedron can be found by considering them in two pairs, and marking 
for each pair the point half-way between them. The two points thus found 
will be the mid-points of a pair of opposite sides, and the centre of gravity 
will lie half-way between these mid-points: 
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Since a pair of opposite sides can be chosen in three ways, it follows 
that the three lines joining mid-points of pairs of opposite sides concur. 
Moreover, as the second figure suggests, this becomes a theorem about the 
mid-points of the sides and diagonals of a quadrilateral, when the tetrahe­
dron is projected onto a plane. 

Eight spheres touch the four faces of a general tetrahedron, 1 inscribed 
and 7 escribed. For a regular tetrahedron 3 of the escribed spheres have 
their centre at infinity. 

The altitudes of a general tetrahedron do not concur. They do intersect 
if opposite edges are perpendicular. Also, if one pair intersect then so do 
the other pair, and if three of the altitudes concur then all four concur. 
This follows from the elegant result, published by Jakob Steiner in 1827, 
that any line which intersects three of the altitudes of a general tetrahedron 
also intersects the fourth. 

Thebault's theorem In 1937 Victor Thebault, a famous connoisseur of 
elementary and not so elementary geometry, published the result that if 
you construct squares on the sides of any parallelogram, their centres form 
another square. 

three squares into one The first treatise on dissections was written by 
Muhammed Abu'l-Wefa. The next figure is his dissection of three identical 
squares into one. 
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The same principle works if the half-squares on the outside are of a 
different size. They can also be thought o(as quarters of a larger square, 
in which case the original dissection is of two squares, one twice the area 
of the other, into one square. 

All these variants are related to the tessellation of two sizes of square. 
Just take such a tessellation, and mark within it one of the smaller squares 
and the quarters of four of the larger squares which are adjacent to it. 

Here are two variations on Abu'l-Wefa's theme. In the first, a hexagon 
has been divided into six 120° isosceles triangles, arranged around another 
hexagon. This dissects any two hexagons of different sizes into one 
hexagon. 
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In this second variation, three congruent triangles and one similar 
triangle are dissected into a larger, similar triangle. 

Yet another variation on the same theme is the dissection of a Greek cross 
into a square by joining every third vertex. 
REFERENCE: DAVID WELLS, 'On gems and generalisations', Games and 
Puzzles, June 1975. 

Thurston's hyperbolic paper This model was suggested by William 
Thurston as a means of visualizing some of the differences between 
ordinary space and the space of hyperbolic geometry. 

Make a surface of equilateral triangles, but fit seven equilateral tri­
angles around each point. The surface will be floppy, and the further you 
extend the surface, always placing seven triangles round each vertex, the 
floppier it will become. 
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There is 'more' hyperbolic space around a point than there is Euclidean 
space, and if this model of hyperbolic space is flattened it becomes 
compressed or folded. This is just the opposite of what happens to the 
surface of a sphere, which stretches or tears if you try to flatten it, and 
which, as you get further and further away from your starting point, closes 
in on itself. 

This is suggested by the figure below,. which shows three perpendicular 
axes and three mutually perpendicular planes through them. These 'planes' 
are not completely flat even near the origin, and they crinkle and fold as 
they move away from it. 

tractrix Place an old fob-watch on a table, so that its chain just reaches 
the edge of the table. Pull the chain along the edge, and the path of the 
watch will be a tractrix, or rather one half of the tractrix. The edge of the 
table is the curve's asymptote. If the tractrix is rotated about its asymptote, 
the resulting surface is the pseudosphere. 
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The tractrix is an involute of the catenary. Wrap a thread round one 
half of a catenary, ending at its vertex, and then unwrap the thread, 
keeping it taut. The path of the end of the thread will be the tractrix. 
Despite being of infinite length, the area between the curve and the axis 
has a finite value, 11t a2, where a is the distance of the vertex from the 
asymptote. 

Consider the infinite set of identical circles whose centres all lie on the 
same straight line. The curve (apart from the line of centres, which cuts 
them all at right angles) is a tractrix. 

trefoil knot This is the simplest of all proper knots, having only three 
crossings. It come in two distinct varieties, left-handed and right-handed. 
Each form can be transformed into the other by a rotation in four 
dimensions, as Mobius realized as long ago as 1827. 
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The second figure illustrates the threefold symmetry of the knot. It is 
equivalent to the edge of the continuous strip of paper on the right. 

Two trefoil knots of the same handedness make a granny knot, and a pair 
of opposite handedness (mirror images of each other) a reef knot: 

This is the shortest trefoil, and the shortest knot of any kind, which can 
be 'tied' with a sequence of face-to-face cubes: 
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triangle reflections Draw a triangle ABC and mark any point P. Mark 
the reflections X, Y, Z, of the point P in the sides of the triangle. Then the 
circles XYC, YZA, ZXB and ABC itself, all meet in a common point. 

triangle tessellations Any single triangle will tessellate, by using a pair 
of triangles to make a parallelogram: 

There are very many other possibilities, based on a variety of triangles, 
which have hardly been investigated. 
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Here is a tessellation of two different triangles, each of which appears 
in three sizes: 

.twenty-four cell This four-dimensional polytope is self-dual, having 24 
cells and vertices, and 96 edges and faces. Each of the 24 cells is an 
octahedron. Each octahedron has 8 triangular faces, and each face is 
shared by 2 octahedra: hence the 96 faces. 

The 24-cell is a truncation of the 16-cell. It can be used to pack four­
dimensional space, as can the hypercube. 

A rhombic dodecahedron can be constructed from two cubes: one of 
them is cut into six pyramids by joining its vertices to its centre, and one 
pyramid is then stuck onto each face of the other cube. In an analogous 
manner, the 24-cell can be constructed from two hypercubes, by cutting 
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one of the hypercubes into 8 cubic pyramids, each based on one of its 8 
cubical cells. 

twisted triangular prism This figure is formed from a triangular prism, 
by giving it a twist and then joining the ends together. It has two faces and 
one edge, and is equivalent to a torus with a spiral going round it three 
times before returning to its starting point. 

On the South Bank, in London, a sculptor has partly embedded in the 
ground a twisted triangular prism, with some chunks missing. Children 
much enjoy playing on it. 

two squares tessellation Any two sizes of square can be used to make 
this simple tessellation, which can also be thought of as a tessellation of 
large squares in which every row and column has been slid apart by the 
same amount to leave a pattern of identical small square holes . 
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As in the Greek cross tessellation, joining any four suitably chosen 
corresponding points together produces a dissection of the two original 
squares into one larger square. Several of the best-known dissections of 
two squares into one correspond to obvious choices for the corresponding 
points, such as the centres of the large squares, or of the small squares, or 
the corners of the squares. 

All these dissections effectively prove Pythagoras' theorem. 
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unduloids If a pair of circular rings, parallel to each other and on the 
same axis, are dipped into a soap solution, the minimal surface formed 
when the rings are empty is the catenoid. If, however, the rings are replaced 
by solid discs, so that the pressure within the film is no longer equal to the 
pressure outside, the minimal surface is an unduloid. 

The outline of the unduloid is always part of the locus of the focus of a 
conic which rolls along a straight line. 
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uniform polyhedra A polyhedron is uniform if all its faces are regular 
(the face may be a regular star polygon) and all its vertices the same. The 
Platonic and the Archimedean polyhedra are the convex uniform polyhe­
dra. Here are two others, the small cubicuboctahedron (left) and the small 
dodecahemicosahedron (right); which are not convex, and whose faces 
intersect each other. 

The small cubicuboctahedron is a rhombicuboctahedron with 12 square 
faces removed and 6 regular octagonal faces inserted. The vertices of this 
solid are the outer vertices, which are the vertices of the equilateral 
triangles. The internal points where the faces cut each other do not count 
as vertices. 

The small dodecahemicosahedron has 12 star pentagons on the faces 
of a regular dodecahedron, together with 10 regular hexagons, all passing 
through the centre of the solid. Once again, the internal intersections of 
the faces are not counted as vertices. 

Coxeter, Longuet-Higgins and Miller published their enumeration of 
the uniform polyhedra in 1954, counting 53 in addition to the Platonic, 
Archimedean and Kepler-Poinsot polyhedra and the prisms and anti­
prisms. They expressed the belief that their list was complete, but offered 
no proof. 

unilluminableroom A room which is not convex cannot be illuminated 
by a single lamp at any point within it. It might be supposed, however, 
that if the walls were entirely covered with mirrors then every part would 
be illuminated wherever the lamp were placed. 
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Surprisingly, though, a 'hall of mirrors' of the shape shown below cannot 
be completely illuminated from any point within it. The shape is based on 
an ellipse, which has the property that a ray of light from one focus will 
be reflected to the other focus. 

The ellipse has been cut along its major axis, and separated into green and 
blue halves, the foci being P, P', Q andQ'. The curves forming the other 
parts of the wall can be chosen with more variety, as long as they touch 
the major axis at the foci. A ray of light from 'behind' one of the foci will 
be reflected behind the other, and a ray of light crossing in front of one 
focus will be reflected 'in front of'the other. Thus light from one red 
'corner' can illuminate only the green region and the other red corner; light 
from the green or yellow region will never reach the orange corner; and 
so on. 
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Urtistablepolyhedr. Is there a polyhedron which, if construCted Out of 

a mater;al of un;form dens;ty, Would stand on one face only, and roll or 

fall OVer ;f placed on any other face! R;chard Guy proved that there ;s, 

and that th;s pr;sm of 17 s;des and 19 faces is un;stable. 

The second figure;s a cross,sect;on, showmg the pr;sm's sYmmetry. 



v 
Verhulst process Verhulst, a pioneer in the study of population, de­
scribed in 1838 a law according to which a population would not increase 
in size indefinitely, contrary to the pessimistic forecasts of Malthus, 
because obstacles to its increase would increase faster than the population 
itself. 

Processes of the form Xn + 1 = r Xn (1 - xn) are named after him. The 

behaviour of the Verhulst process depends very much on the chosen value 
of r. If r < 2, then the system quickly settles down to a steady value. 
However, if 2 < r < 2·5, then the population oscillates between two values. 
The solution is said to have bifurcated. 

As r increases a little beyond 2·5 the solution bifurcates again, then 
again, to oscillate between eight values, then sixteen values, and so on. 
These bifurcations come closer and closer together, until after an infinite 
number of bifurcations, when r is approximately 2·570, the solutions 
become chaotic. 
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The points now start jumping around, superficially without rhyme or 
reason. Actually they have either no periodic behaviour, or very high 
periods. This chaotic region itself, however, does have structure. There are 
vertical bands within the region, it is criss-crossed by the previous outer 
boundaries which continue over it, and at about r = 2·83 the whole 
Verhulst figure appears again, in miniature. 

In order for an infinite number of bifurcations to appear in a finite 
interval, the distance between successive bifurcations must get less and less 
very quickly. They do, and the ratio of these distances tends to a limit, 
called Feigenbaum's number after its discoverer. It is approximately 4·669 
2016609. 

Viviani's theorem In an equilateral triangle, the sum of the perpendi­
culars from any point P to the sides, is equal to the altitude of the triangle: 

A 

PD + PE + PF = AX 

If P lies outside the triangle the relationship still holds, provided one or 
two of the perpendiculars (the ones that lie entirely outside the triangle) 
are measured as negative. 
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Voderberg tilings Voderberg published a description of this remark­
able tile in 1936. Two tiles will completely enclose not only one other tile, 
but two. In the second figure, the four tiles form a decagon whose opposite 
edges are equal and parallel. 

Copies can be fitted together to form a infinite horizontal strip, and 
duplicate strips will then join it to cover the plane. It is also the basis for 
this spiral tessellation with two 'centres': 

The next figure shows how one of the matching arms of the spiral is 
constructed. The first portion consists of 12 single tiles arranged in a 
half-circle around the right-hand 'centre'. The second portion consists of 
3 x 12 = 36 tiles, arranged in groups of three, with 24 'facing' outwards 
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and 12 'inwards'. The third portion, if shown completely, would consist 
of 5 X 12 = 60 tiles in groups of five, with 36 facing outwards and 24 facing 
inwards. The pattern continues, with each arm occupying a half-circle and 
formed in 12 groups of 5, 7, 9, ... tiles. 

Since Voderberg's pioneering example, many tiles with similar properties 
have since been found. For example, Branko Grunbaum and G. C. 
Shephard discovered and named this versatile which can also be used to 
construct spirals with 1,2,3, and 6 centres, as well as many other tilings. 
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These figures illustrate one way to construct spiral tessellations based on 
the first figure in the set, which has rotational symmetry of order 10. This 
tessellation can be extended outwards for ever. 

Pick anyone of its diameters and slide one half of the tessellation to one 
side just far enough to give the second figure with one spiral arm. Next, 
continue to slide the two halves of the original tessellation along the 
diameter, the same distance again, to produce the third figure with two 
separate spirals. A similar movement produces the final figure with three 
separate arms, and the process can be continued indefinitely. 
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wallpaper patterns A wallpaper pattern repeats at regular intervals in 
two different directions. Its symmetries depend on the symmetry of the 
underlying network, and also on whether the repeating motif has any of 
the same symmetries. The network can have five forms as shown in the 
rows in this figure. 
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Combining the possible symmetries produces 17 types of wallpaper pat­
tern, all of which are found among the tilings of the Alhambra palace in 
Spain, and elsewhere in Moorish architecture. 

woven polyhedra Is it possible to wrap the surface of a polyhedron 
with cylindrical strips in a uniform and symmetrical manner? Yes it is, as 
Jean Pedersen demonstrated. Her models are similar to some traditional 
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types of knots and Japanese decorative Temari balls. The figure shows six 
strands covering the surface of an dodecahedron. 

REFERENCE: JEAN PEDERSEN, 'Geometry: The unity of theory and 
practice', Mathematical Intelligencer, Vol. 5, No.4, 1983. 
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zonagons If a polygon has an even number of sides, all its sides equal 
in length and opposite sides parallel, then it is called a zonagon. It can be 
dissected into rhombuses. A square, which is a rhombus already, is the 
only such polygon which does not have more than one such dissection. A 
hexagonal zonagon can be dissected into rhombuses in 2 ways, an octa­
gonal zonagon in 4 ways, and so on. 

Regular even-sided polygons are zonagons, and odd-sided polygons can 
be transformed into zonagons and dissected into rhombuses if the mid­
points of the sides are considered as extra vertices, doubling the number 
of sides. 
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These divisions into rhombuses are useful for solving dissection prob­
lems, as dodecagon dissection illustrates. 

Because the elements are equal-edged these polygons can be hinged, and 
even turned into tessellations of squares, if the vertex at the bottom of the 
left hand figure, where four rhombuses meet, is first broken. 
REFERENCE: JUDITA COFFMAN, 'Maths club activities', PLUS, No.3, 
1986. 

zonahedra The zonahedra were first investigated by E. S. Fedorov, in 
connection with crystallography. All the edges of a zonahedron are the 
same length, and all the faces are rhombuses; the edges lie in n given 
directions only. It necessarily has n(n:""'1) faces. (If the faces are not 
rhombuses, but are still equilateral and have opposite edges parallel, then 
the resulting figure is a parallelohedron.) 

The simplest zonahedron is the rhombic prism or rhombohedron, with 
edges lying in three directions only. A cube is a special case of this solid. 
The general rhombic dodecahedron has edges in four directions only, and 
therefore has 4 x 3 = 12 faces. If the edges are in the directions of the four 
diagonals of a cube, it is a regular rhombic dodecahedron. 

The six diameters of a regular icosahedron lead to the rhombic 
triacontahedron, with 30 faces, the dual of the icosidodecahedron. Re­
moving one complete zone of rhombuses from this figure (in other words, 
removing all the rhombuses containing edges in one particular direction), 
leaves the rhombic icosahedron of 20 faces and removing a zone from this 
produces a rhombic dodecahedron (which is not the rhombic dodecahe­
dron which is the dual of the cuboctahedron). 
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Any zonahedron can be dissected into parallelepipeds, which in turn 
can be dissected into cubes. Therefore any two zonahedra can be dissected 
one into the other provided they have the same volume. 
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168,172 
colour, 196, 228 
compasses, 148 
complex number, 126 
compound polyhedra, 42, 78, 

248 
conchoid of Nicomedes, 50 
concurrent lines, 20, 29, 150, 

172,180 
cone, 48, 63, 106, 154, 169 

configuration, 31,40,54,63, 
72,159,168,172,214,224 

confocal conics, 166 
conic, 20,36,39,49,62, 83, 

106,141,166,168,172, 
173,175,190,192,262 

convexity, 17,29, 72 
conveyor belt, 152 
Conway, 14,176 
Coxeter, 77, 104, 110,263 
Crelle, 21 
Cremona, 40 
cross, 89 
cross-cap, 197 
crystallography, 274 
crystals, 93,216 
cube, 6,8, 13,37,38,41,49, 

58,60,77,93,105,113, 
126, 166, 185, 187, 195, 
214,216,219,224,232, 
236,257,259,275 

cub octahedron, 8, 42, 60, 98, 
235,238,274 

Cundy, 51 
curvature, 199,238 
curve, 16, 17,29,38,49,59, 

100,103,133,166,229 
curves of constant diameter, 220 
cusp, 10, 24, 25 
cyclide, 62 
cycloid, 45,140 
cylinder, 81,94,95, 112, 118, 

145,153,219,222,225,236 

D' Alembert, 154 
Dandelin, 48 
Dawson, 149 
De Gua de Malves, 207 
decagon, 268 
defect of a triangle, 110 



deltahedron, 78 
deltoid, 129, 155,231 
Desargues, 40,41,54 
Descartes, 5,67,207 
Dido, 123 
Diocles, 120 
directrix, 64, 107, 170, 172 
dissection, 1, 15, 56, 61, 73, 

89,204,206,213,241,242, 
250,252,260,273,275 

divine proportion, 87 
Dixon, 74, 121 
dodecagon, 56,137,274 
dodecahedron, 7,8,34,37,58, 

60,77,85,87,93,130,187, 
211,215,263,272 

dome, 85 
Douglas, 186 
dual, 21,23, 37,42,55, 60, 

104,105,114,168,179, 
210,259,274 

Dudeney, 61,205 
Duijvestijn, 242 
Dupin, 62 
duplicating the cube, 39, 182 
Durer, 104, 140,211 

ellipse, 5, 11,25, 39, 48, 49, 
63,107,113,141,142,175, 
202,245,264 

ellipsoids, 166 
envelope, 10, 11,24,28, 52, 

62, 108, 139, 140, 155, 158, 
171,172,181,231 

epicycloid, 24 
equiangular spiral, 74, 88,201 
equilateral triangle, 18,30,41, 

57,61,129,135,136,145, 
161,219,221,222,245,254 
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equilateral triangles and polyhe­
dra, 51, 86, 163, 180,263 

equilateral triangles, properties 
o~ 75,128,154,156,181, 
200,267 

equilateral triangles, in tessela­
tions, 60, 68, 102, 122,213, 
226 

escribed circles, 115 
Euclid, 5,87,93, 109, 144, 

187,193,203,211,230 
Euclidean geometry, 110, 195 
Euler, 52,69,131, 184, 188, 

197,210 
Evelyn, 228, 231 
Eves, 146 
evolute, 28, 46, 68, 158 
excentres, 44, 115 
excircle, 43, 76 
extreme and mean ratio, 87 

Fano, 40, 72 
Fatou, 72 
Fedorov, 274 
Feigenbaum number, 267 
Fermat, 212 
Fermat point, 25, 75, 158,200, 

245 
Fermat spiral, 68 
Feuerbach, 76 
Feuerbach's theorem, 159 
Fifth Postulate, 109 
finite projective plane, 72 
fixed point, 83 
fixed point theorem, 90 
focus, 39,107,142,170,202, 

262,264 
FappI, 234 
fractal, 4, 136, 147 
Frederickson, 243 
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Fregier, 83 
Frieze, 105 
Fuhrmann, 43 

Galileo, 26, 44 
Garfield, 203 
Gauss, 85,212 
gears, 113 
generator, 111, 112, 118 
geodesic, 199 
Gerdes, 206 
Gergonne, 43 
Gergonne's point, 115 
glide reflection, 84 
Goldberg, 146, 162,269 
golden ratio, 58, 87, 163, 176 
golden rectangle, 88 
Gorham, 184 
Gott, 106 
Graham, 153 
granny knot, 257 
great dodecahedron, 77,131 
great icosahedron, 78, 131 
great rhombicosidodecahedron, 

7 
great rhombicuboctahedron, 7 
great stellated dodecahedron, 

77,130 
Greek cross, 254, 261 
Griinbaum, 269 
Guy, 265 
Gyrofastigium, 72 

Haken and Appel, 83 
Harborth, 90 
harmonic conjugates, 92, 190 
harmonic motion, 142 
Haiiy, 93 
Heawood, 82 
Hebesphenomegacorona, 72 

helicoid, 95 
Henon, 95 
heptagon, 192,210,249 
heptahedron, 247 
Heron of Alexandria, 99 
hexagon, 14,20,23,31,41, 

53,60,102,104,120,122, 
138,172,192,211,213, 
221,226,239,246,253, 
263,273 

Hilbert, 100,250 
Hill, 251 
hinges, 19,61, 101,211,216, 

217,274 
Hippocrates of Chios, 143 
Holditch, 103 
honeycombs, 123,216 
Huygens, 26, 47 
hyperbola, 39,63, 106, 111, 

139, 141, 175, 181; rectangu­
lar, 209 

hyperbolic geometry, 110, 188, 
199,238,254 

hyperbolic paper, 254 
hyperboloid, 166 
hypercube, 210, 259 
hypocycloid, 10, 52 

icosahedron, 7, 34, 37, 51, 58, 
60,71,77,86,87,130,161, 
163,185,187,274 

icosidodecahedron, 7, 38, 60, 
274 

illusions, 87 
incentres, 44, 115 
incircle, 43, 67, 76, 192 
infinity, 141, 146, 168, 195 
inscribed, 231, 252 
inversion, 33, 62, 116, 120, 

139,182,209,232 



involute, 27, 256 
iron pyrites crystals, 187 
Islamic designs, 23,249 
isochrone, 202 

Jacobi, 21 
James, 177 
Jessen's orthogonal icosahedron, 

161 
Johnson, R. A. 125,210 
Julia, 72, 126, 146 
Julia set, 72,127,146 
Jung, 128 

Kakeya, 129 
Kempe, 82,182 
Kepler, 130, 141,213,248 
Kepler-Poinsot polyhedra, 263 
Kershner, 177 
Kiepert, 43 
Kirkman, 172 
Klee, 9 
Klein, 11 0, 131 
knot, 20, 78, 132, 160, 164, 

191,256,272 
Koch, 135 
Kiirschak, 136 

Lagrange, 185 
lanyard knot, 133 
Lebesgue, 138 
Leibniz, 10 
lemniscate, 26, 139, 142, 209 
Lemoine, 43 
Leonardo da Vinci, 65, 130, 

206,211 
light rays, 99, 108, 142, 170, 

264 
lima~on, 28, 140 
lima~on of Pascal, 39 

limit rays, 109 
limiting point, 80 
Lindgren, 243 
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linkage, 140, 161, 181 
Lissajous, 142 
Lobachevsky, 109 
locus, 8, 10,262 
logarithmic spiral, 67 
Longuet-Higgins, 263 
Loomis, 203 
Lorenz, 142 
Lusin, 242 

Malfatti, 145 
Mandelbrot, 146 
Mandelbrot set, 72, 127, 146 
map, 81 
mapping, 95 
Mascheroni, 148 
matchsticks, 149 
maximum, 3, 145, 195,237 
McCrea, 111 
median, 69, 150 
Menelaus of Alexandria, 150 
Mersenne, 44 
metabidiminished rhombicosi-

dodecahedron, 72 
meteorology, 142 
Miller, 263 
minimal surface, 27,94, 185, 

223,224,262 
minimum, 16, 18, 19, 75,99, 

138,167,182,183,245 
Miquel, 151 
mirror, 108, 170, 263 
mirror images, 8 
Mobius, 152,256 
Mobius strip, 152, 164, 180, 

196 
Mohr, 148 
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Morley, 154 
Morley triangle, 231 
Moron, 241 

Nagel, 43 
Nagel's point, 115 
Napoleon, 12, 75,156 
nephroid, 28 
Neuberg, 43 
Newman, 117 
Newton, 36 
Nicomedes, 38,50 
nine-point circle, 76, 165,209, 

230 
non-Euclidean geometry, 110, 

238 
numerology, 240 

ocean plait, 133 
octagon, 273 
octahedron, 6,31,38,42,51, 

60,77,93,98,119,180, 
187,216,232,248,259 

Olds, 239 
one-sided surface, 98, 164 
op-art, 201 
orthocentre, 32, 36, 43, 44, 69, 

159,165,209,230 
orthogonal, 33,35,40,62, 

120,166,188 
oval, 25 

Pacioli, 130 
packing, 3,237 
Paine, 165 
Pal, 138 
pangeometry, 110 
Pappus, 5,6,39,41, 123, 142, 

168,193,206 
Pappus'theorem, 160 

parabola, 26, 40, 63, 74, 111, 
120, 141, 151, 169, 175 

parabolic spiral, 74 
paraboloid, hyperbolic, 110 
paraboloid of revolution, 170 
parallel lines, 109, 195 
parallelepiped, 275 
parallelogram, 158, 206, 213, 

252,258 
Pargeter, 184 
Pascal, Blaise, 21,39,44, 140, 

172, 173 
Pascal's theorem, 168 
Peaucellier, 181 
Peaucellier's cell, 120 
pedal triangle, 14 
Pedersen, 34,271 
pencil, 175 
pendulum, 47, 92 
Penrose, 175 
pentagon, 79, 87, 104, 106, 

122,130,177,191,211, 
213, 249, 263 

pentagonal pyramids, 130 
pentatope, 210 
pentomino,89 
Perigal, 205 
Perron, 129 
Perseus, 26 
Petrie, 104 
Philo of Byzantium, 182 
Pick, 183 
pinch-points, 247 
plait, 184 
plant growth, 74 
Plateau, 186 
Plato, 187 
Platonic solids, 41,51,60,184, 

187,263 
Plucker, 36, 172 



Poincare, 188 
Poinsot, 131 
point at infinity, 195,214 
polar, 190 
polar equation, 8, 139, 140 
pole, 68, 190, 239 
polygon, 9, 12,29,53, 123, 

125,150,183,273 
polygon, regular, 6,60, 71, 

192,201,210,211,226, 
243,249,263 

polyhedron, 34,37,51, 77, 85, 
93,104,161,184,187,209, 
213,217,225,232,238, 
265,271, see also Platonic so­
lids 

polyomino, 117 
polytopes, 209 
Poncelet, 159, 192 
population growth, 266 
porism, 184, 192,245 
prime knot, 134, 160 
prime number, 85 
prism, 54, 72, 145,216,251, 

260,263,274 
Proclus, 165 
projectile, 170 
projective plane, 72 
pseudosphere, 255 
pursuit curves, 22 
puzzles, 61 
pyramid, 34, 71, 187,216,234, 

259 
Pythagoras, 261 

quadric surface, 110 
quadrilateral, 11, 15,35,43, 

98,111,122,146,158,175, 
193,200,206,208,239, 
245,252 
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quartic, 49, 142 

radical axis, 35 
rectangle, 73,116, 131, 169, 

241 
reef knot, 257 
reflection, 99 
Regiomontanus, 3 
region, 175,196 
Reinhardt, 177 
Reuleaux triangle, 219 
Reye, 214,224 
rhombic dodecahedra, 233 
rhombic dodecahedron, 57,60, 

93,118,215,233,259,274 
rhombic icosahedron, 274 
rhombic triacontahedron, 38, 

60,274 
rhombicuboctahedron, 263 
rhombohedron, 274 
rhombus, 56,60,91,101, 176, 

182,215,273,274 
Rice, 178 
Richmond, 40,212 
rigidity, 161, 167 
rings, 18,20 
road networks, 75 
Roberval, 46 
Roman surface, 246 
R0mer, 24 
rotor, 221 
rugby, 3 
ruler and compasses, 25,49, 

148,149,210 
Rupert, Prince, 195 
Ruziewicz, 241 

Salmon, 172 
Scherk, 223 
Schlafli, 224 
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Schoenberg, 13 7 
Schwarz, 186,224,225 
seventeen-gon, 212 
sheet bend, 133 
Shephard, 269 
Sierpinski, 229 
simplex, 179 
Simson, 155,230 
Simson line, 52, 155 
skew polyhedra, 104 
skew quadrilateral, 111, 161, 

186 
small cubicuboctahedron, 263 
small dodecahemicosahedron, 

263 
small rhombicuboctahedron, 7, 

60 
small stellated dodecahedron, 

77,130 
snowflake, 229 
snowflake curve, 135 
snub cube, 7, 8 
snub dodecahedron, 7,8 
soap films, 186, 246, 262 
Soddy, 5, 120,231 
Soddy's hexlet, 120 
space-filling, 41,216,232 
space-filling curve, 100 
sphere, 31,48,62, 154, 184, 

200,233,252 
spheres, tangent, 4, 197,232 
spherical trigonometry, 150, 

200,238 
sphinx, 213 
spiral, 8, 67, 74, 260 
spiral tessellation, 268 
Sponge, 105 
Sprague, 138, 242 
square, 1, 11, 12, 15, 19, 30, 

60,61,88,89,100,101, 

104,136,149,201,203, 
213,229,232,241,242, 
249,252,260,273 

stars, 211,263 
Stein, 179 
Steiner, 120, 123, 172, 200, 

245,247,252 
Steiner chains, 6, 120, 232 
Steiner's Roman surface, 98 
Steinhaus, 14, 149,222 
stella octangula, 77 
stellation, 77,209,216,248 
surface of revolution, 27, 111 
Sweet, 153 
Swift, 147 
symmetry, 84, 165 

tangent, 25,44,52,66, 70, 
108, 113, 118, 142, 153, 
172,190,245 

tautochrone, 46 
Temari balls, 272 
tessaract, 113 
tessellation, 23,30, 89,90, 

101, 103, 117, 121, 156, 
167,175,177,204,208, 
211,239,242,249,253, 
258,259,260,268,274 

tessellations, regular, 68, 213 
tessellations, semi-regular, 23, 

30,41,60 
tetrahedron, 13, 14,37,51,60, 

77,105,130,179,184,187, 
217,207,232,234,247, 
248,250,251 

Thales, 2, 125, 193 
Theretetus, 187 
Thebault, 252 
Thurston, 254 



tile, 90, 103, 136, 175,211, 
239,242,268, see also tessel­
lation 

toothpicks, 210 
Torricelli, 44, 75 
torus, 26, 62, 228, 260 
tractrix, 27, 199 
trammel, 66 
transformations, 95, 194 
trapeziodal icositetrahedron, 60 
trapezium, 213 
triangle, 1, 13,36,40,61,65, 

71,106,110,120,160,167, 
179,184,189,192,238, 
239,250,254,258 

triangle, properties of, 12, 14, 
21,32,42,67,69,75,115, 
145, 150, 154, 156, 165, 
180,193,202,230 

triangular number, 198· 
tridiminished icosahedron, 71 
triple point, 98 
trisecting the angle, 25,39 
trisection, 8,25, 154 

INDEX • 285 

truncated cube, 8 
truncation, 6, 7, 8, 180,233, 

234,235,259 
Tschirnhausen, 28 
Tsu Ch'ung-Chih, 118 
Tucker, 43 

Ulam, 81 

Verhulst, 266 
versatile, 269 
Virgil, 123 
Viviani, 267 
Voderberg, 268 

wallet hinge, 218 
wallpaper patterns, 121 
Watt, 182 
Wheeler, 77 
Wren, 46, 112 

Zalgaller, 72 
Zenodorus, 123 
zonohedron, 41,60 
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