Table of Contents

Timeline Chart .. 3

Introduction ... 4

Ancient Canal Builders ... 5
 Canals .. 5
 Chauvin, LA Canal ... 6
 N-S, LA Canal ... 6
 Grand Terre Island, LA ... 7
 Key Largo, FL ... 7
 Channel ... 8
 Harbors ... 8
 West Tampa, FL Harbor ... 9
 Saint Jean Key, FL .. 10
 Cape Canaveral, FL ... 10
 Quays and Docks ... 11
 Barnegat Beach, NJ .. 11
 Oak Island, NY ... 12
 Grassy Key, FL ... 12
 Engineering ... 13
 Construction .. 14
 Windover Bog, Titusville, FL ... 15
 Tidal Shoulder .. 16
 Sea Level Rise ... 17

Mega Disaster 7,100 BP
 Storegga Explosion and Tsunami .. 18
 Bosporus Straits ... 19
 Gibraltar Straits .. 20
 Michilla Bay, Chile ... 21
 Galveston Bay, Texas .. 21

Derivative Cultures ... 22
 Sumerian ... 22
 Early Egyptian .. 23
 Indus Valley ... 23
 Watson Brake, LA ... 23
 Tick Island, FL .. 24
 Tamoka Mounds, FL ... 25
 Mayan Migration ... 25
 Turnbull Ruins, FL .. 26
 Levee and Dike Builders ... 27
 Copper Mining - MI ... 28
 Conclusion ... 29

Biography ... 30
<table>
<thead>
<tr>
<th>Date</th>
<th>Atlantic Dispersion</th>
</tr>
</thead>
<tbody>
<tr>
<td>8,500 BP</td>
<td>Ancient Canal Builders and the 'Atlantic Dispersion Theory' - extended colonization, resource-rich areas. Mississippi Delta, Florida, N. Europe, Spain, France, Mediterranean, Egypt, N. Africa</td>
</tr>
<tr>
<td>7,600 BP</td>
<td>2nd Storegga Landslide and Mega Tsunami Bosporus Strait breach, Mediterranean overflow, Atlantic, Gulf Coast and Yucatan hit by gigantic storm surge, over 6000' high crest. Population devastated.</td>
</tr>
<tr>
<td>6,000 BP</td>
<td>Sumerian Civilization</td>
</tr>
<tr>
<td>5,500 BP</td>
<td>Early Egypt, Early Shell Mound Builders, Early Mississippi Mound Builders</td>
</tr>
<tr>
<td>5,115 BP</td>
<td>Beginning date of Mayan Calendar</td>
</tr>
<tr>
<td>4,800 BP</td>
<td>Indus Valley Civilization</td>
</tr>
<tr>
<td>3,500 BP</td>
<td>Minoan, Babylonian Empire, Mid Shell Mound, Mississippi Mound Builders</td>
</tr>
<tr>
<td>3,150 BP</td>
<td>Mound Builder Immigration to Mexico circa 3,600 BP</td>
</tr>
<tr>
<td></td>
<td>Mega Tsunami</td>
</tr>
</tbody>
</table>
Introduction to the Ancient Canal Builders
and the Atlantic Dispersion Theory

The Atlantic Dispersion theory addresses the Colonization of the Atlantic Rim by an unknown civilization that was large enough to support a multi continent colonization. The colonizers required the support of resource-rich outpost areas that would provide the needed supplies and raw materials. These outpost areas included Long Island, NY, Florida, the Mississippi River and Delta, Yucatan Peninsula, Amazonia, Northern Europe, Spain, France, the Mediterranean, Egypt and North Africa, and possibly the Upper Peninsula of Michigan. This inquiry will look at specific periods for the colonization between the years of 9,000 YBP and 7,100 YBP; the latter date is pinned to a catastrophic event that destroyed all cultural elements of that colonization, and possibly the colonizer’s central population base itself.

Whether that central civilization was Atlantis or some other great culture, is not the focus of this inquiry. Our research, at the current time, is focused on the colonized Atlantic and Gulf Coasts of North America, primarily from Long Island Sound to the Mississippi Delta.

Based on remnants and artifacts, which define the size and scope of several mega engineering projects in the colonized areas, the population living on just the Atlantic and Gulf coasts alone, is estimated to be between 30 and 50 million inhabitants. There seems to be an equal or greater population distribution in the Yucatan Peninsula and Amazonia with an estimate of 40-60 million people in those areas. In addition, based on the above population numbers and relative equal numbers in northern Europe, France, Spain, and the Mediterranean basin, the colonial population can be roughly estimated to be between 100 and 150 million people. The population living in the primary or originating location could be expected to be equal or greater than the colonial population. Therefore the entire Atlantic Dispersion population, based on these estimates, was probably 200 to 300 million inhabitants.
Ancient Canal Builders

We will look primarily at the dispersed colonization of Florida and the Mississippi Delta as well as the Atlantic and Gulf coasts of North America. For descriptive purposes, we are referring to these colonial inhabitants as the 'Ancient Canal Builders'. We will show evidence of a very sophisticated and technologically advanced engineering population that built very large (mega engineering) type super canals and channels, including docks, quays, harbors, habitation, travel, as well as very long and straight transport canals.

The major feature of this dominant transportation style is the long distance, straight line canal, many over 300 feet wide, and some well over 85 miles long. Another major characteristic is the shore side or land-based canal systems that appear to be much like our modern- 'near the ocean' habitation systems, which include underwater harbors and dock-like features.

The Ancient Canal Builders were a seafaring or ocean-based complex society with natural resources, transportation, agriculture and aquaculture as their internal and external or Atlantic based trade system. Based on common sense, systems of controls, to included government, security, commerce, communication, entertainment, and other social structural systems, would have been required to function as a society in these numbers.

Canals

Canal and a Channel are often confused, with their names interchangeably used. A canal is 100% constructed waterway while a channel is a natural waterway that may be modified in some manner, generally by dredging. By definition then, a Canal is constructed where and when the surrounding land is above water, generally using a cutting process. It's features include shoulder bank, or 'berm' of residue of the digging process. Canals are generally built for commercial transport or general transportation.

Other uses for canals include docks and quays and to provide access to manmade harbors, which is generally used for commercial and industrial purposes. The following data from our research data show different styles and types of canals. [Link]
Chauvin, LA - Double Lane Canal

Near Chauvin, LA (pronounced ShowVan) this canal system begins as a double lane that traverses the Delta, ending up in the circle just west of Venice. From this location, it is about 320 feet wide and in excess of 70 miles in length. This canal is severely degraded and disappears for some distance under the water table in many places. If this canal is a continuation of the single lane canal that extends west to Ricoloc, then the entire length is well over 120 miles.

Each lane of this long, straight double lane canal averages between 110 feet to 130 feet in width, which is greater than the Panama Canal 'panamax' width restriction. Almost no ocean going ship or barges in the world today are greater than 110 feet in width. The dimensions of this canal system suggests that it was created to handle very large ocean-going ships and barges. [Link]

North-South (Louisiana) Double Lane

This double lane canal traverses the Delta in a north-south direction from its entrance at Alluvial City to its crossing of the Mississippi River north of Port Sulphur, LA. It is one of the best examples of a very old, very degraded transport system that has not been taken over by modern canal builders, probably because of its construction design of a double lane with residue or tailing pile separating the two lanes. This canal is approximately 24 miles long with each lane about 130 feet wide and sinks below the water table in many places. After crossing the Mississippi, this canal system splits with one lane heading south to the central complex (salt mound) just west of Venice, and the northern branch bearing southwest in a direct straight line to Leesville, with much of that distance under the water table. It then turns west to Terrebonne, then turns to the northwest and continues to Cut Off, LA, where it finally meets the Chauvin Cross Delta canal. If taken in its entirety, this canal is just under 130 miles in length. [Link]
Grand Terre Island, LA

Grand Terre Island, LA is a section where the Chauvin double lane canal rises above the water table as it traverses the Delta from east of Golden Meadows to the circle complex at the salt mounds west of Venice. The underwater section is over twelve miles to the west, and more than sixteen miles underwater to the east.

Key Largo, FL

This system, near Key Largo, FL, is a series of inlet canals that are grown over and silted-in, eroding back into the landscape. The center canal, one of the largest and oldest found to date, is about 2,700 feet long to the end of the silted-in paddle head. The original width is about 350 feet with the newer section about 170 feet wide, The old section of the south canal is about 445 feet wide, with the newer section about 220 ft wide; the north canal is about 85 feet wide. The curved sections connecting the canals are completely silted-in and grown over.

To the right, an unused, and unconnected cut canal goes out to open water. There is a substantial berm around this underwater canal, indicating that it was built when the tidal shelf was above water. Of significance is the moat canal surrounding this complex. All indications are that this complex is one of the oldest found to date, possibly predating the harbor canals above Palm Beach.

This complex appears to have two building and use periods, one that is less structured and has the appearance of being built on top of the old system. The original berm on this center canal includes the large rectangle paddle head. The second berm seems to have been cut out of the silted-over section. It is not possible in this preview to do justice to the many features of this complex, further field work will be required to make serious statements of its potential purpose and function. [Link]
Channels

Channels are natural waterways that have been enhanced for commercial or industrial use, by dredging, bank enhancement or bank stabilization to stabilize or direct tide flow. In every case, a channel by definition, is a natural waterway, and may or may not be enhanced by technology. When a channel is modified from its natural state, it is called a 'modified' channel.

The complexity of ship channel navigation projects involve civil engineering in many different areas such as hydraulics, weather conditions, vessel motions, commodity movements, dredging and disposal activities, economic and benefit studies, and environmental and cultural impact evaluations. By definition, a channel is always 'sunken or underwater'.

A majority of the Intercoastal Waterway is in fact an ancient system; parts of it have been taken over and re-dredged for modern use. Proof of this concept is the Chauvin Canal and the N-S Double Lane Canal in Louisiana as well as a series of sunken channels connected to harbors in the Cape Canaveral area of Florida, which show extensive development of complex channel systems.

Harbors

The purpose of any man-made harbor is to provide marine access to shore side facilities. When an apparent harbor does not access the current shoreline, but appears to have provided that function when the sea level was lower, it is fair to assume the harbor and it's canals were built at some period relative to the tidal plain they are situated on. These contour harbor and canal shapes are cut into what appears to be an older tidal shoulder, and do not appear to have any connection to modern industrial or commercial use. The following examples from our research data are several illustrations of different styles and types of channels.

This aerial view in the above right Google Earth graphic is of an extended canal and harbor system in the Cape Canaveral, FL area that depicts a 'berm', showing is was cut when the land was above the water table with no connection to any current land based use or facility. It is clearly evident, that when
West Tampa Harbor, FL

West Tampa Harbor is a linchpin site of our investigation. The Canal Builders created (built) the West Tampa Harbor and Georgetown Lagoon complexes sometime prior to the Super Mega Disaster of 7,100 years ago. It would not have been built more than about 300 years earlier, because of a steady and rapid rise in sea level of more than 25 feet between 8,000 and 7,000 years before present better known as yBP. It could not have been built much later, otherwise the two tidal shoulders would not have been present.

The actual construction of the harbor complex shows design, planning, engineering, and mechanical construction techniques that are equivalent to our modern capabilities.

If the shore-based channels were built for the same purpose as they are used for today, urban ocean side domestic habitation, then the Canal Builders were at least as advanced as we are now, possessing not only construction technology, but also the political-administration systems of safety, security, communication, and advanced transportation technology among other things.
Saint Jean Key, FL

This is a complex of Harbor and Inlet Canals in the Tampa Bay ocean outlet, showing edge berm throughout the entire length.

A. Throughout the complex area are several harbors and canals that do not seem to serve any land-based formation. Many of the canals have significant berm edges showing along their borders; all three tidal shoulders are visible.

B. This canal, about 1-1/2 miles long, and about 160 feet wide, has very significant berm edge, indicating it also was constructed when this tidal plain was above sea level.

C. This specific harbor with an egress canal, was obviously constructed to serve shore-based needs, although very little modern use is being made of this complex today.

Cape Canaveral, FL

This is a very clear example of hidden or underwater harbor-type systems of contours and channels in the area of Cape Canaveral. The south cut is about 2,600 ft wide and between 1,700 feet and 2,100 feet long. The channel north is about 165 feet wide and shows what appear to have been natural incoming drainage from the east shore bank. Obviously, this tidal shelf was above the mean water level for such drainage to occur.

It seems that the purpose of any man-made harbor is to provide marine access to shore side facilities. However, most of these harbors do not access the current shoreline. The lower left larger harbor has a canal cut to the pond or inlet to the harbor's lower right, making it appear as if the harbor, connecting the canal and pond were all surrounded by dry land at one time.
Quays and Docks

Flagler Beach, FL

These are two dock or quay-like canals just east of Flagler Beach. The north or top canal is about 1,750 feet long; the south or bottom canal is about 2,100 feet long. Both have a slightly variable width, averaging about 115 feet. Of significant note is the different head or closed end style of the two canals. One has a squared end, and the other has a rounded end. This feature is a recognizable signature in many older large closed end dock or quay-styled canals. Each outlet has an opening feature that includes a narrowing at the entry, and looks planned rather than accidental, as the contours are relatively the same for both. Of some interest and possible connection with this complex are the seven rectangles just north of these canals. [Link]

Barnegat Beach, NJ

This modern development appears to have been built over existing canals because the three canals on the upper left edge show the original structure. These three apparently are on ground that is too low or marshy to be useable and give the impression that the developer just dredged out the others to reuse them. Notice on the upper edge of the current housing line, is the symbol-patterns and lines of the original ancient builders. Carbon dating the three unused canals is one of our first priorities.

Please note the center line in the three unused channels. That is a signature construction method for the Ancient Canal Builders, and is a duplicate of the long distance canals in Louisiana that have a center line.

Also note that the erosion of the outer left canal is about half its length. [Link]
Oak Island - Jones Beach, Long Island

This is part of a series of sunken harbors on Long Island Sound in the Jones Beach area. This specific harbor has an entry cut from the original major channel and appears to have both a secondary and tertiary tidal shoulder. The head of this harbor, used by modern development is a testament to its age. Due to the swampy ground surrounding the harbor, it has only been developed on the shore side high ground. Note that this is some of the most expensive real estate in the world, if this harbor could have been utilized in any commercial way, it would have been. Tidal shoulder depth dating will provide age and use estimates. [Link]

Grassy Key, FL

This is one of the best example of all the researched sites, showing a complete canal system that has been neither built by or built for modern urban living and not been used by modern development because there is no outlet to open water. Yet open water is less than 400 feet away! In this area, there are several other channels and canals both above ground and on the tidal shelf. On the ocean side of Little Crawl Key, just to the south, is another good example of an unused canal system. [Link]
Engineering

Building a canal is not as simple as moving digging or cutting equipment in and starting to dig. A host of issues have to be accounted for to successful design, engineer, build and complete a project on the magnitude of even a small urban canal complex.

Any canal of significant size or length tends to fall into the category of 'Colossal Engineering'. The complexities in design when dealing with various hydraulic and other issues seriously complicate the design and engineering process. Of significant importance is ergonomics; more than 27,400 people died in the process of building the Panama Canal in the modern era.

Colossal Engineering requires advanced mathematics, communication, staging, locks and flow control, scheduling, labor, equipment, resources, material handling, hydraulics, erosion, financing, maintenance, management control, security, and administration. This photo is a recent example of design engineering failure.

The canal systems on our website, particularly the long and larger complex ones, required a sophisticated level of design engineering that is on the scale of our largest engineering projects in the world.

If a complex canal system is presently sunken, underwater, partially sunken or submerged, design and engineering, by necessity, had to have been available during its original construction. If the canal complex is dated to a particular period, then those engineering capabilities had to have been available during construction.
Ancient Canal Builders and the 'Atlantic Dispersion Theory'

Construction

There are two major construction processes in the development of harbors, channels and canals; Open Cut and 'Dredge Cut' methods. Each has its own specific characteristics, and can easily be identified by type.

Open Cut - To the left is a construction photo of Kissimmee Canal circa 1960. This is open cut construction in an area close to the water table. Various mechanical devices are used in this process, such as clamshell, crane type bucket hoist or, as in this case, pumps and pipes that move the refuse or debris to the bank.

The resulting berm or pile of residue along the bank, identifies this process as an 'Open Cut' construction project, meaning construction occurred when the surrounding land was above the water table. Another feature of the 'Open Cut' method is the regular width, depth and relative straight edge of the canal. If a canal has long relative straight sides, and the bank has a residue pile, it is by definition probably 'open cut' construction.

Dredge Cut - Dredge Cutting construction uses various methods in an underwater process that varies from clam-shell, cutting head to suction head dredging methods.

In most cases, tailings or residue from dredging is barged or piped to a disposal area some distance from the dredging process. Control of the underwater cutting head is not as precise as an open cut process, leaving the excavation with some variation in contour, width and depth.

If an underwater system shows a lack of berm or bank residue and significant variations in the width and contour of the excavation, it can be easily identified as a probable Dredge Cut system.

In summary, a canal, channel or harbor, is built in one of two ways: either Open Cut when the area is above the water table, or Dredge Cut underwater. The process and equipment can vary, but essentially they are following one of the above two methods.

The art of dredging goes back thousands of years, and no quick review can do justice to the technology. Neither of these criteria is absolute, and the above information is offered to help in assessing probable construction methods of underwater canals, channels and harbors. Using this process, it is quite easy to potentially identify which were constructed using Open Cut or Dredge Cut methods.
Age and Dating

Windover Bog People 8,500 yBP.

Since its discovery in 1982, this small peat-bottomed pond, situated roughly between Cape Canaveral and Disney World in east-central Florida, has offered up no fewer than 168 burials. Unlike their European counterparts, these long-dead individuals have no skin remaining; they are skeletons. But they are otherwise so well-preserved that, when unearthed, over half of them still contained brain tissue.

The remains, together with artifacts that look like they were deposited yesterday and include such items as bone tools, a bottle gourd and woven fabric shrouds, offer a rare portrait of life in an ancient hunter-gatherer-fisher community. And ancient it is: radiocarbon dating has placed the burials in a 1,100-year window centered around 8,300 yBP - that's over 3,500 years before the Pyramids were built and thousands of years older than most European bog bodies. In 1986, when its full significance became known as the largest collection of skeletal material of this antiquity in North America—Windover was named a National Historic Landmark.

The fabric used to wrap the dead is the oldest flexible fabric ever found in this part of the world. The "yarn" was made with fibers from native plants--probably palmetto or queen palm--using at least seven different complex weaves that required the use of some type of loom. Weaving a piece of fabric large enough to wrap an adult body would have taken a lot of time, the weavers probably would not have been enthusiastic about stopping work, disassembling looms, and moving to a different camp site every few weeks. This and other factors indicate that this was a semi-permanent site. They may have moved to this site in the spring and summer to take advantage of fresh fruits and berries, and returning to the shore of the nearby brackish lagoon--now called the Indian River--during the winter.

[Link]
Tidal Shoulder

Ocean level, when stable for some period of time develops a 'tidal shoulder' as a reaction to water movement and tidal raise and fall. Given enough time and a relative stable shoreline, the tidal shoulder outline is sometimes very clear, other times it is less clear. Depth between shoulders provides an accurate estimate of tidal plain life cycle or the length of time between the cycle-use dates of the upper and lower tidal shoulder.

The Holocene Sea Level rise, (Jamaica plot) tertiary or third tidal shoulder('C') is estimated to be five foot deep. That depth is precisely the edge of the 'leveling off' of the early Holocene rapid ocean rise, as measured by the Jamaica results, where 7,000 years ago the ocean level stabilized at about 1.5 meters or about five feet lower than it is today.

The Secondary Tidal Shoulder ('B') is estimated to be about two feet in depth. That depth coincides with the second 'leveling off' of sea level rise at about 5,900 years ago. The Secondary Tidal Plain covers a period of about 800 years and levels off to the Primary Tidal Plain ('A') which was the current water table about 5,100 years ago.

The difference between any two water tables in terms of depth, defines the 'life cycle' of that tidal plain, allowing any non natural artifacts or construction to be dated to no earlier than the earlier tidal shoulder.

With that parameter established, most information on this website is supported by artifacts and construction on the Secondary Tidal Plain level, indicating its build and use dates to be no earlier than the Tertiary Tidal Shoulder of 7,400 yBP, and no later than the Secondary Tidal Shoulder of 5,900 years ago. [Link]
Sea Level Rise

Sea Level Increases over the last 9,000 years

The following illustration is a Holocene Sea Level chart plotting sea level over the past 9,000 years. Readings to determine ocean levels at specific periods of time, have been taken in eight different global locations. Of significance is the Jamaica or ‘Caribbean Plain’ sea level plot, shown in light turquoise. We are using the Jamaica plots, because the plot readings are the closest to our Atlantic and Gulf coasts.

This Jamaica plots show an average sea level increase of about five feet between 7,100 and 5,000 yBP. From that point forward, sea level has been relatively stable, with less than five to six inch increase.

![Holocene Sea Level Chart](link)

This chart confirms a ‘trigger’ event at just before 7,100 yBP, that literally stopped the rapid sea level rise. Over the next 2,000 years, sea levels have risen about five feet in the areas depicted in this study.

Using sea level as a dating mechanism is valid when a non natural occurring harbor, canal, channel, feature, contour or artifact situated on a tidal shelf can be identified as having been built or created when that area was above sea level. It is also valid if underwater or sunken harbors’ are not connected to any current shoreline or when underwater canals, harbors or channels show a substantial berm or residue along their edge. This feature is a result of dredging where the residue-refuse is discharged along the bank. This does not occur with an underwater dredging process, where the refuse is piped from the dredge head, generally on a barge, or floating above water, to a refuse or tailing pile on shore, often at some distance from the dredge rig.

This method is also valid when assessing channels and canals that have major connected sections both above and below sea level. [Link]
Super Mega Disaster 5 concurrent events

(1) Second Storegga Submarine Landslide 7,100 BP

The major catastrophic event that devastated the Ancient Canal Builders, as well as other civilizations around the Atlantic rim, was the Second Storegga Methane Gas Explosion and Landslide that occurred between Iceland and Denmark, bordering the North Sea and the North Atlantic, about 7,100 years ago. The result of that event was a super-mega tsunami of very large scope, destroying the Ancient Canal Builder civilization as well as other Atlantic Rim civilizations.

The Second Storegga Slide was large enough to cause a Super mega tsunami around 7,100 years ago that triggered widespread coastal flooding and seawater inundation in Scotland, Norway and other coastlines bordering the eastern North Atlantic and North Sea. At a number of localities near the eastern coast of Scotland is a sand deposit as deep as 25 feet above sea level that has been dated to about 7,000 years ago. One researcher in 1989 proposed that this sand is a mega tsunami deposit resulting from the sediment displacement associated with the Second Storegga Slide.

Bathymetry and acoustic seafloor imagery of the Storegga Slide have identified seafloor depressions or “pockmarks” of up to 1500 feet in diameter and less than fifteen feet in depth, which are associated with the presence of gas. The pockmarks are consistent with the remnants of old methane gas explosion sites that triggered the landslides at Storegga.
Ancient Canal Builders and the 'Atlantic Dispersion Theory'

(2) Bosporus Straits

In an introduction to his book, The Black Sea Event, author Valentina Yanko-Hombach referenced Ryan and Pittman, geologists from Columbia University, who proposed the Black Sea flood evidence, suggested to the research team that a drowning event in the Pontic Basin may have resulted from a marine transgression into a vast shrunken lake. It appears that this inundation subsequently deposited a uniform drape of marine mud upon the former terrestrial surface, creating a sapropel or putrefied muddy layer equally thick in depression, as on crests and dunes with no sign of landward-directed onlap of the sedimentary layers in the drape (Ryan et. al. 2003). The 'C' age determinations documented a simultaneous subaqueous colonization of the terrestrial surface by marine mollusks at 7,100 yBP, and this date was assigned to the flooding event.

Their projected cause/effect for such inundation and flooding, though specific to a fixed date of 7,100 yBP, did not include reference to the Storegga event, which occurred at exactly the same time, This is significant, because the Storegga data was not available to them at the time!

If the Storegga event and the Bosporus breech event dates are related in time, then it is a possibility that the Storegga catastrophic event was a contributing factor or possibly a significant cause of the Bosporus land bridge failure. To reproduce the breach, a Mega Tsunami would have had to have washed over land, filling the Mediterranean basin, raising its water table level several hundred feet higher than sea level. The high water level caused an initial failure at the Bosporus land bridge. The Bosporus Strait was the first relief point, and the second was the failure at the Gibraltar Land Bridge.
Ancient Canal Builders and the 'Atlantic Dispersion Theory'

(3) Gibraltar Straits

From all known historical data of the Gibraltar Straits, its width has quadrupled within recorded history. In the fifth century BC, the Greeks measured the Strait to be about 35 stadia or about four miles wide. By the time Julius Caesar’s Roman Legions marched across what is now Europe, Gibraltar Strait was seven miles wide. By the Crusades in the 11th century, Gibraltar was measured as twelve miles wide; now in the 21st century, it currently measures fifteen miles wide. If we reverse engineer the growth rate, we can extrapolate the initial failure to be sometime around 3,100 yBP.

It would be a suspension of belief to assume no regression in growth rate before recorded history in the 5th century BC. The following chart shows the Gibraltar Strait growth rate over time - please note that the "Y" axis depicts time in century (100 year) segments, and the "X" axis presents width in miles.

![Gibraltar Land Bridge Breach Chart]

Whether the Gibraltar Strait was open or closed during the Storegga event, the Super Tsunami could have filled the Mediterranean to several hundred feet above current sea level, then plugging the Strait with mud, rocks and debris from land submergence with the material carried with the Super Tsunami.

Whether the plugging at Gibraltar occurred or the tidal wave breached the Gibraltar land bridge, the resulting increased and sustained sea level height of the new 'drowned' Mediterranean basin is the only rational explanation for the breach at the Bosporus Straits. If a Tsunami wave of any magnitude, even hundreds to thousands of feet high, would encroach, then subside in hours it would not create the breach at Bosporus as part of that process. In short, the Bosporus Straits literally could not have breached with the Mediterranean at its current sea level; the height of the surrounding land argues against current sea level causing the breach.
(4) Michilla Bay, Chile

The following is a photo of an elevated Tsunami dump deposit at Michilla Bay, northern Chile, occurring around 7,100 years ago, coincidentally with the sea level reaching its present level following the Holocene marine transgression; the ocean is to the right. The top of the terrace stands 6m to 7m above sea level and about 1 km inland.

Photo by Prof. Collin Murray Wallace, School of Geoscience, Univ. of Wollongong.

(5) Galveston Bay, Texas

John Anderson, the W. Maurice Ewing Chair in Oceanography and Professor of Earth Science at Rice University at Houston, discussing Galveston Bay, said "The geological record shows that sediment flowing into the bays have tended to just keep pace with rising sea levels over the past 10,000 years. The flooding events mark points in time when this delicate balance was upset. The most dramatic event occurred in Galveston Bay between 7,300-7,100 years ago. In that geological instant, the boundary between the river and bay receded about 35 kilometers upstream. At that time, the head of the bay was somewhere north of I-10, but sediments flowing back into the bay from the Trinity River pushed that back south to the present location, creating Lake Anahuac in the process."

Underwatertimes.com News Service - October 23, 2006
Ancient Canal Builders and the 'Atlantic Dispersion Theory'

Derivative Cultures

It is significant that many of the world’s earliest civilization came onto the world stage, almost fully formed, and functional as full cultural societies within a 500-600 year period between 5,500 and 6,000 years ago. It is almost on the edge of credibility to accept that four of the world’s first civilizations appeared fully functional within a little more than a thousand years following the mega disaster of 7,100 yBP. Those civilizations include the Sumerians, Early Egyptians, Indus Valley and the Early Shell Mound Builders on Florida’s coasts. By the nature of their appearance and the similarity of their technologies, these civilizations appear to be derivative culture or "offspring" of a past pre cataclysmic civilization.

Sumerian Civilization 6,000 yBP

The Sumerian early technologies include writing, printing, legal structures, government, arts, entertainment, musical instruments, the wheel, the potter’s wheel, religion, energy, science, chemistry, military, architecture-building-construction, mathematics, cosmology, astronomy, weights and measures, calendar and time keeping systems, medicine, annual agriculture, metallurgy, money, banking, domestication of animals, weaving and textile manufacturing, horticulture and water management to name but a few. This was a highly complex civilization with history and artifacts of a claimed connection to some form of air travel.

Though the debate may rage on whether Sumer was the first civilization in the world, it is clear that the advances made by the Sumerians permeated throughout the cultures of the region and eventually the world. Sumerian-led technological advances helped shape modern-day business practices and mathematical systems. Their religion and establishment of government laid the foundation for future cultures to build on. Finally, literature works from the Sumerian era are regarded as some of the most outstanding works of ancient literature. Combining these three ideals show that, regardless of Sumerians being the "first" civilization, they laid the foundations that helped build some of the greatest civilizations in the world.

Based on the many advanced technologies of the Sumerians, it is logical to assume they are a derivative culture of an early cataclysmic culture as their history and mythology attest to,
Ancient Canal Builders and the 'Atlantic Dispersion Theory'

Early Egyptian 5,400 yBP

The early Egyptian civilization produced very advanced technology that included the development of paper, writing, libraries, architecture (buildings, monuments, obelisks and pillars), navigation (ship building, sails), agriculture (cultivation, irrigation animal domestication), higher education (astronomy, medicine, engineering, chemistry, fine art, astronomy, mathematics) construction and trades (glass working, furniture manufacturing, metallurgy) religion, mummification, cosmology, textiles (weaving, dye), incense, laws, governmental administration and many other technologies that suggest these may also be derivative technologies from a pre-cataclysmic civilization.

Indus Valley Civilization 5,300 yBP

The Indus Valley Civilization, now in Pakistan, thrived in the Indus and Ghaggar-Hakra river valleys, and in the northwestern parts of India, Afghanistan and Turkmenistan. The civilization, also known as the Harappan Civilization, lasted from 3300 BC to 1700 BC. The discovery of the Ancient Indus River Valley Civilization was made, when the Harappan city, the first city of the Indus Valley, was excavated.

The purpose of this inquiry is NOT to make the case for Sumerians or Egyptians or Indus Valley as derivative cultures, but the point is made in passing. Our purpose is to define the Atlantic and Gulf coast derivative civilizations, and their technologies.

Early Mound Builders 5,500 yBP - Watson's Brake, LA.

Located in northern Louisiana, the mound complex now called Watson Brake is the earliest dated complex construction in the Americas. It consists of an oval formation of eleven mounds from three to twenty five feet tall, they are connected by ridges to form an oval nearly 900 feet across and have been carbon dated to 5,500 yBP. Patterns evident in orientations of the mound monuments, suggest a possible practice of astronomical determination of orientations.
Tick Island, FL 5,500 BP

The early Shell Mound Builders seem to be a direct derivative culture of the Canal Builder civilization, following the Super Mega Tsunami of 7,100 yBP. An excavated and best preserved example of these people is at Tick Island near Jacksonville, FL.

Based on recent radio-carbon dating, results indicate that these specific mounds were built in a very short period of time, probably in just a few years. The mounds date to about the same period as the Watson Brake, LA mounds, or about 5,500 yBP (based on Ripley Bullen's work). This is actually astounding as it predates Mayan mounds by about 3,000 years, the Olmec mounds by 2,300 years and Poverty Point, LA by about 2,000 years.

The architecture of Tick Island, FL and Watson Brake, LA predate any structures in Mexico or South America. Did the first steps beyond migratory hunting begin along the Gulf Coast of North America and then spread southward to Mexico, the Caribbean and South America? The Mayas recorded on their stone stele that their ancestors, the Olmecs, arrived in three great canoe flotillas near Vera Cruz, Mexico about 3,500 yBP, about the same time that Poverty Point was settled.

The mound is surprisingly similar in form to both the early Zoque and Maya mounds with a ramp leading to a flat top where it is presumed that ceremonies were held. The mound was too damaged by erosion and vandalism.

Indigenous peoples, in what is now Georgia and Florida, had been making pottery since about 2500 BC. However, the architecture of Tick Island, FL and Watson Brake, LA predate any structures in Mexico or South America. Did the first steps beyond being migratory hunters begin along the Gulf Coast of the North America, spreading southward to Mexico, the Caribbean and South America? It is a tantalizing possibility.

If the Early Shell Mound Builders are a direct derivative culture of the lost or decimated Ancient Canal Builders, it is easy to understand their need to build structures would be, in effect, artificial hills used as a refuge when and if the high waters returned threatening the population. This culture was about 1,600 years later than the Super Mega Tsunami of 7,100 yBP and coexisted with the start of the Sumerian and Egyptian cultures.

Tomoka Mounds, FL 5,500 BP

Near Ormond Beach, FL. Tomoka Mounds, along with Watson Brake and Tick Island, are dated to about 5,500 yBP. The significant difference between this and all other shell mound or midden sites, is that these burial mounds are situated directly on top of an older Ancient Canal Builder site location. Built on a promontory of land that has an artificial harbor and a series of seven quay or dock cuts, these canals are very similar to other canals and harbors created by the Ancient Canal Builders, and it appears that the shell mound builders did what every culture does; they used existing artifacts to their benefit, though it is possible that these early Shell Mound Builders knew of, or had some oral history of the previous Ancient Canal Builder culture.

This archaeological site is a large complex of burial mounds and shell middens that comprise one of the earliest Native American settlements on the central East Coast of Florida. The mound construction dates back to the Mount Taylor period, around 5500 years ago. Among the more interesting items found at the site are artifacts imported from quite some distance, including a cache of six bannerstones made of materials that are native to north Georgia.

The actual construction method of the Tomoka Mounds consists of the extensive use of sand-layering techniques in which nine separate layers of differently colored sand are laid over each other (Milanich). The exact purpose of this construction technique is undetermined but some researchers have conjectured it might relate to various ethnic or group associations within the community.

Early Mayan 5,100 BP

The Maya’s recorded on their stone stele that the ancestors of the Zoque arrived in three great canoes flotillas onto the coast of Vera Cruz, Mexico around 3600 yBP. This is about the same time that Poverty Point, LA was settled. Up to this point in time, pottery was not made in Mexico; the Zoque apparently introduced the technology for making pottery.

Their long count calendar sets a date of 5,113 yBP as their 'Creation of the World' date.

Though the focus of this study is not the early Mayans, they are mentioned here both as a potential derivative culture of the Ancient Canal Builders and contemporaries to the Early Shell Mound Builders.
The Turnbull Ruins are made from coquina rocks and overlook the water in New Smyrna Beach. It's believed that during the American colonization of 1766 to 1777, Andrew Turnbull attempted to build his personal mansion on the coquina foundation. However the work was never completed, and true origination of the ruins remains unknown today. The foundation is built into a shell mound, probably from the early shell mound builder period and is included here for reference.
Levee and Dike Builders in Edgewater, FL 5,500 yBP

Starting near New Smyrna Beach, continuing south through the islands around the Intercoastal Waterway; and down to the Indian River area, most of the islands and Intercoastal land have internal canals dug into the relative shore line. Some of the canals are partially degraded, and the water table appears to have risen about a one foot since these canals were created. If that is correct, it puts the date of construction very close to 5,500 yBP.

These canals, while not of the size and scope of the earlier Ancient Canal Builders, are still imposing as mega projects as are the fairly large numerous shell mounds. To a casual observer, these canals appear to be the means to a process of dike or levee building. The local population remembered the devastation in their recent past by both a giant flood and a raising of the water table by several feet, it is not difficult to understand the local culture's need to protect its productive land and habitation from further tidal incursion. They built the levees just before sea levels stabilized at their current level even though much of the dikes and levees show a light amount of alluvial incursion.

This particular section is near Edgewater, FL. south of New Smyrna Beach.
Copper Mining - Upper Peninsula, MI

Evidence exists of mining colonies at Michigan’s Isle Royale and Keweenaw Peninsula where copper ore was extracted. Although there are about 5000 pit mines on Isle Royale alone, outside of some cairns and slab rock ruins, there is little to help pin down these miners.

Miles upon miles of open pit and closed tunnel copper mines are across the area. Many of the closed tunnels are well constructed and reinforced using similar mining techniques to our modern world. About 5000 mines were discovered in an area that is roughly 200 kilometers long and five to ten kilometers wide. The area mined on Isle Royale measures 60 to 80 kilometers. If all the mines were placed in one consecutive row, it would measure eight kilometers long by eight meters wide by ten meters deep.

Every mine that has opened in the past 200 years, showed some previous prehistoric mining activity. This included mines where the copper ore did not protrude to the surface, showing evidence of prehistoric miners’ advanced knowledge to identify subterranean ores. Sites that showed obvious evidence of ancient mining, were in modern times considered good omens as they were often proved to be the best sites to find large copper veins.

Curiously, North American Indian mounds have been found to contain copper sheets made in the shape of animal hides. Called "reels," their function, if any, is unknown. The reels do, however, resemble oddly shaped copper ingots common in European Bronze Age commerce. Their peculiar shape earned these ingots the name "oxhides" and have been found in Bronze Age shipwrecks, and are even said to be portrayed on wall paintings in Egyptian tombs. The standardized hide-like shape, with its four convenient handles, was useful in carrying and stacking the heavy ingots. Could the reels from the North American mounds have been copied from the oxhides? It is tempting to speculate that the Copper Culture miners were actually an Atlantic rim colony. *(Sodders, Betty; "Who Mined American Copper 5,000 Years Ago?" Ancient American, 1:28, September/October 1993.)*

If the Ancient Canal Builders built canals that would provide navigation for very large ocean going ships, it follows that those ships would and probably did travel to other places such as the Upper Peninsula of Michigan to acquire copper as a resource for the Colonials of the period.

If the copper mining area of the Upper Peninsula was not affected by the Super Mega Tsunami of 7,100 yBP, then the location and availability of the natural resources at this location could have continued to have been exploited by derivative cultures that retained a memory of the copper resource and its location.

There is some evidence on Isle Royale on the north portion of the island, of a manmade harbor and a possible dock about 500 feet long.
Conclusion

Sometime between 9,000 and 7,100 years ago, a very sophisticated and advanced civilization of millions of people lived and worked on the East and Gulf coasts of North America. They were a highly developed ocean-going culture with technology and capabilities in canal and harbor construction. The Ancient Canal Builders must have had very large ocean-going crafts to need canals and channels that are large enough to handle today’s super ‘panamax’ tankers and ships, which run the 120 foot width of width limit of the Panama Canal.

The Ancient Canal Builders were moving goods and resources on a very large scale. Evidence in the Delta further suggests they were extracting natural resources, including salt and other minerals from the Delta alluvial soil. It is reasonable to assume that their large container ships were also used to transport mined copper from the Upper Peninsula of Michigan during the same relative era.

These people were part of a colonization of a dispersed Atlantic culture, an extended colony in a very resource rich area including Florida and the Mississippi Delta, with major canals and harbors as far north as Long Island Sound in NY. This civilization was an Atlantic Rim colony and directly related to other European cultures as defined by the DNA evidence of the Windover Bog people.

The entire Ancient Canal Builder civilization was destroyed with other Atlantic Rim colonies by a Super Mega disaster, approximately 7,100 years ago. This disaster was caused by the Second Storegga Methane Gas eruption, and a subsurface landslide in an area of more than 600 miles in length and 70 miles wide. Located between Denmark and Iceland, the landslide created a Mega Super Tsunami. The waves may have washed overland into and filling the Mediterranean Basin, causing the Bosporus Strait to immediately breach the land bridge and create the Black Sea. The water level of the Mediterranean maintained a height of about 400 feet above sea level, for several thousand years, inundating the Great Pyramid at Giza to a level of 200 feet. A second catastrophic event, approximately 3,150 years ago, caused a breach of the land bridge at Gibraltar, creating what we now refer to as the Gibraltar Strait. That breech opened and drained the Mediterranean to current sea levels, with the enormous tidal flow widening the Strait from a very narrow breach in 3100 yBP, to its fifteen mile width today.

The methane gas explosion and landslide was on such a massive scale, that other land masses near other close subduction areas could have been affected and may have subsided or become inundated to a depth of hundreds to thousands of feet as a contiguous part of the initial landslide. Although the Mega Disaster could certainly account for an inundation of a large land mass, I do not claim that land mass to be the well-known Atlantis.

The Super Disaster caused a global conflagration, destroying almost all evidence of previous civilizations around the Atlantic Basin Rim, including the Ancient Canal Builders on the Atlantic and Gulf coasts of North America. The survivors, some retaining memories and artifacts of their lost culture, began about 1,000 years later to build complete civilizations that grew up fully functional with laws, writing, horticulture, farming, engineering, advanced mathematics, medicine, history, arts, science, astronomy, cosmology, construction and aquatic engineering to name a few technologies. From that start, four leading civilizations expanded within a 400-600 year period; the Sumerians, Egyptians, the Indus Valley population, and Early Mound Builders.
A second, though less devastating catastrophe occurred around 3,100 years ago. This disaster is well documented and needs little exposure. It again devastated Atlantic Rim populations for a period of well over 500 years.

It is not the purpose of this research to prove or disprove the Flood, Atlantis, Aliens, ET, UFO's, the Biblical Flood, Pole Shift, Crop Circles, Parapsychology, Mormonism, Religion, or any 'Alternative' theory or hypothesis. Our sole purpose is to document actual artifacts and geological events that demonstrate the development of the Ancient Canal Builders, an advanced civilization on the Atlantic and Gulf coasts of the North America sometime just before 7,100 years ago. We will also show how a Super Mega Tsunami devastated that civilization by, destroying every vestige of that civilization with the exception of its underwater artifacts of harbors, canals and channels.

If you have information, documentation, photographs or other relevant materials, or would like to book John as a Guest Speaker, or interview; please contact us via our Contact Page.

Biography

John Jensen is a retired Pulp and Paper Start Up training specialist. He has written over 160 technical books on Paper Machine Operations, Pulp Mill Operations, Woodyard and Chemical Plant Operations. In addition, he has produced over 17 running hours of industrial video, as well as many other training programs in various multi-media formats. His clients have included many Fortune 50 clients including Weyerhaeuser, James River, Mead and International Paper. He is a recognized as one of the seminal thinkers in establishing technical startup training as part of a Greenfield or major Modernization project.

John's lifelong passion has been the study and research of ancient and pre-historic civilizations. Other interest include early Middle Ages History, and the Knights Templar.

John lives with his wife Pat, in Sanford, FL. They have been married 32 years and have five grown children and nine grandchildren.

John is available for lectures on this subject. Contact him through the 'Contact Us' page of the website.

John Jensen

407-610-7227

www.ancientcanalbuilders.com